Simtek : Jurnal Sistem Informasi dan Teknik Komputer
Vol. 10 No. 1 (2025): April 2025

DETEKSI MALFORMASI UTERUS MELALUI CITRA HISTEROSALPINGOGRAFI MENGGUNAKAN DEEP LEARNING

Baital, Muhammad Syarif (Unknown)
Achmad, Andani (Unknown)
Hazriani, Hazriani (Unknown)



Article Info

Publish Date
21 Apr 2025

Abstract

Penelitian ini menyoroti tingginya angka kejadian malformasi uterus yang berkontribusi terhadap infertilitas, keguguran, serta komplikasi perinatal, sehingga diperlukan metode diagnostik yang lebih presisi. Tujuan utama dari penelitian ini adalah merancang model deep learning berbasis Convolutional Neural Network (CNN) dengan arsitektur ResNet untuk mendeteksi berbagai jenis malformasi uterus melalui citra Histerosalpingografi (HSG) serta menilai tingkat akurasinya dalam mengklasifikasikan enam jenis malformasi, yaitu unicornuate, bicornuate, didelphys, septate, arcuate, dan uterus normal. Dataset yang digunakan mencakup 1.800 citra yang terbagi secara merata ke dalam enam kategori. Model ResNet Baseline menunjukkan performa terbaik dengan tingkat akurasi, presisi, recall, dan F1-Score sebesar 100% pada data latih sebesar 90%.

Copyrights © 2025






Journal Info

Abbrev

simtek

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Engineering

Description

Jurnal Sistem Informasi dan Teknik Komputer diterbitkan dua edisi jurnal dalam satu tahun, yaitu pada bulan April dan Oktober. Jurnal Sistem Informasi dan Teknik Komputer mencakup bidang-bidang ilmu teknologi informasi antara lain teknik komputer, ilmu komputer, sistem informasi, komputerisasi ...