Bulletin of Chemical Reaction Engineering & Catalysis
2025: BCREC Volume 20 Issue 2 Year 2025 (August 2025)

Nigella Sativa-mediated Synthesis of BiVO4/g-C3N4 Composites for the Removal of Methylene Blue Dye

Haryadinaru, Ghinatanitha Haqqu (Unknown)
Setyaningtyas, Tien (Unknown)
Riapanitra, Anung (Unknown)



Article Info

Publish Date
30 Aug 2025

Abstract

This study investigates the synthesis and photocatalytic performance of BiVO4-Nigella Sativa/g-C3N4 composites for the degradation of methylene blue dye. The composites were synthesized using a coprecipitation method and characterized through various techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET) surface area analysis, and scanning electron microscopy (SEM) to determine their crystal structure, chemical composition, morphology, adsorption and photocatalytic abilities. A variation of mass ratios of BiVO4 to g-C3N4 of 1:2, 1:3, and 1:4 was used in this investigation. The photocatalytic test results indicated that the composite with a mass ratio of 1:2 achieved the highest methylene blue degradation, reaching 91.73%, which was primarily attributed to an adsorption activity of 81.12% and a photocatalytic degradation of 10.60%. The photocatalytic activity was significantly enhanced under alkaline conditions, particularly at pH levels between 9 and 10, which facilitated the formation of reactive oxygen species (ROS). The study highlights the synergistic effects of the BiVO4 and g-C3N4 combination, which promotes efficient charge transfer, reduces electron-hole recombination, and expands light absorption due to a decrease in the effective bandgap energy. Overall, the findings indicate that BiVO4-Nigella Sativa/g-C3N4 composites have considerable potential for application in wastewater treatment, particularly for the remediation of organic dye pollutants. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Copyrights © 2025






Journal Info

Abbrev

bcrec

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry

Description

Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in ...