Perkembangan teknologi saat ini mempermudah proses belajar bahasa melalui aplikasi seperti Duolingo. Penelitian ini bertujuan untuk memahami persepsi pengguna terhadap Duolingo dengan menggunakan analisis sentimen berbasis VADER (Valence Aware Dictionary and Sentiment Reasoner). Ulasan pengguna dari Google Play Store diproses menggunakan Google Collaboratory, menghasilkan 1.831 data yang dikelompokkan sebagai netral, negatif, dan positif. Hasil analisis menunjukkan akurasi keseluruhan sebesar 98 persen. Model ini efektif dalam mengidentifikasi sentimen netral (presisi 100 persen, recall 97 persen, F1-score 99 persen) dan positif (presisi 99 persen, recall 82 persen, F1-score 99 persen). Namun, model kurang efektif dalam mendeteksi emosi negatif, dengan F1-score 74 persen, recall 82 persen, dan presisi 67 persen, yang menunjukkan adanya kesalahan klasifikasi pada beberapa emosi negatif. Awan kata menunjukkan kata-kata positif seperti "good," "helpful", dan "fun," serta kata-kata negatif seperti "technical problems" dan "learning limitations." Tantangan dalam penggunaan VADER termasuk ketidakmampuan menangani konteks bahasa yang kompleks dan nuansa emosional yang mendalam. Untuk meningkatkan klasifikasi sentimen, penelitian ini merekomendasikan penggunaan VADER bersama Deep-Translator. Kombinasi ini dapat membantu mengidentifikasi sentimen negatif dengan lebih baik dan menangani data dengan berbagai bahasa secara lebih efisien. Tujuan penelitian ini adalah untuk memahami sudut pandang pengguna dan meningkatkan akurasi analisis sentimen, sehingga berkontribusi pada pengembangan aplikasi pembelajaran bahasa yang lebih baik.
                        
                        
                        
                        
                            
                                Copyrights © 2025