Jurnal E-Komtek
Vol 9 No 1 (2025)

Literature Study: Prediction of the Type of Company where Students Work Using Naïve Bayes and Neural Network Algorithms

Saputra, Angga (Unknown)
Luqman (Unknown)
Herman Bedi Agtriadi (Unknown)



Article Info

Publish Date
30 Jun 2025

Abstract

Research was conducted to evaluate the effectiveness of various machine learning algorithms, such as Naive Bayes, Support Vector Machine, Random Forest, and Artificial Neural Network (ANN), in predicting and classifying data. Naive Bayes proved to be efficient and accurate in structured data classification, such as predicting alumni's waiting time to get a job (94%) and vocational school students' job readiness (96.95%). On the other hand, neural network methods such as ANN and GRNN are superior in handling non-linear regression problems, such as house price prediction or college students' study period, although there is still room to improve accuracy. Random Forest is more suitable for complex data, while Naive Bayes is more effective for simple data. This research emphasizes the importance of selecting relevant variables, such as gender, major, and GPA, to improve model performance. Therefore, the selection of machine learning methods should be tailored to the type of data and the purpose of the analysis, as each algorithm has its own advantages and disadvantages.

Copyrights © 2025






Journal Info

Abbrev

E-KOMTEK

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Jurnal E-Komtek (Elektro-Komputer-Teknik) is a Journal that contains scientific articles in the form of research results, analytical studies, application of theory, and discussion of various problems relating to Electrical, Computer, and Automotive Mechanical ...