This study examines people's reactions to the Indonesian government's plan to adjust the VAT rate from 11% to 12%, which is scheduled to take effect in 2025. This policy triggered a variety of opinions among netizens, especially on the social networking service X. To explore public opinion, data was collected through web crawling techniques from October to December 2024, resulting in 1,871 records. Then the dataset was preprocessed by text cleaning, case folding, tokenization, stopword removal, and stemming, and the dataset was reduced to 1806. In addition, up to 1000 data will be manually labeled, negative, neutral, positive, by language experts to ensure that each sentence has the appropriate label. These data are used for testing and training, then up to 806 unlabeled data are used as final testing. At the word weighting stage, the Term Frequency-Inverse Document Frequency (TF-IDF) method is used to perform the process. In this study, three machine learning algorithms were used to compare the classification performance, namely Support Vector Machine (SVM), Random Forest, and Decision Tree. Based on the evaluation results, the SVM algorithm recorded the highest accuracy rate of 94%, followed by Random Forest with 93% and Decision Tree with 91%. The results showed a predominance of negative sentiments, indicating public dissatisfaction with the policy. This study proves that machine learning techniques can be effectively used to capture public perceptions through social media, which in turn can be a benchmark for the government to make decisions that will be enforced.
Copyrights © 2025