Journal of Electronics, Electromedical Engineering, and Medical Informatics
Vol 7 No 3 (2025): July

BHMI: A Multi-Sensor Biomechanical Human Model Interface for Quantifying Ergonomic Stress in Armored Vehicle

Mutiara, Giva Andriana (Unknown)
Adiluhung, Hardy (Unknown)
Periyadi, Periyadi (Unknown)
Alfarisi, Muhammad Rizqy (Unknown)
Meisaroh, Lisda (Unknown)



Article Info

Publish Date
09 Jun 2025

Abstract

Ergonomic stress inside armored military vehicles presents a critical yet often overlooked risk to soldier safety, operational effectiveness, and long-term health. Traditional ergonomic assessments rely heavily on subjective expert evaluations, failing to capture dynamic environmental stressors such as vibration, noise, thermal fluctuations, and gas exposure during actual field operations. This study aims to address this gap by introducing the Biomechanical Human Model Interface (BHMI), a multi-sensor platform designed to objectively quantify ergonomic stress under operational conditions. The main contribution of this work is the development and validation of BHMI, which integrates anthropometric human modeling with embedded environmental sensors, enabling real-time, multi-dimensional ergonomic data acquisition during vehicle maneuvers. BHMI was deployed in high-speed off-road vehicle operations, simulating the 50th percentile Indonesian soldier’s seated posture. The system continuously monitored vibration (0–16 g range), noise (30–130 dB range), temperature (–40°C to 80°C), humidity (0–100% RH), and gas concentration (CO and NH₃) using calibrated, field-hardened sensors. Experimental results revealed ergonomic stress levels exceeding human tolerance thresholds, including vibration peaks reaching 9.8 m/s², cabin noise levels up to 100 dB, and cabin temperatures exceeding 39°C. The use of BHMI improved the repeatability and precision of ergonomic risk assessments by 27% compared to traditional methods. Seating gap deviations of up to ±270 mm were identified when soldiers wore full operational gear, highlighting critical areas of postural fatigue risk. In conclusion, BHMI represents a novel, sensor-integrated approach to ergonomic evaluation in military environments, enabling more accurate design validation, reducing subjective bias, and providing actionable insights to enhance soldier endurance, comfort, and mission readiness.

Copyrights © 2025






Journal Info

Abbrev

jeeemi

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas ...