JURTEKSI
Vol 11, No 3 (2025): Juni 2025

THE EFFECT OF FACIAL ACCESSORY AUGMENTATION ON THE ACCURACY OF DEEP LEARNING-BASED FACIAL RECOGNITION SYSTEMS

Hidayat, Ahmad Nur (Unknown)
Suciati, Nanik (Unknown)
Saikhu, Ahmad (Unknown)



Article Info

Publish Date
20 Jun 2025

Abstract

Abstract: Face recognition based on deep learning has become an important technology in many areas. However, these systems often face challenges in real-world conditions, such as when the face is partially covered by accessories such as masks or glasses. This study aims to evaluate the effect of data augmentation by adding facial accessories (masks, glasses, and a combination of both) and geometric augmentation on the accuracy of face recognition systems. There are three types of datasets used in this method: the original dataset (category 1), the dataset with facial accessories augmentation (category 2), and the dataset with geometric augmentation (category 3). Data augmentation was performed on the training dataset to increase diversity, followed by the face detection process using SCRFD and feature extraction with ArcFace. The model was then trained using Multi-Layer Perceptron (MLP). Based on the results, adding face accessories (category 2) made the model a lot more accurate, hitting 99% accuracy. In category 3, adding geometric features improved accuracy to 91%. Other evaluation metrics, such as precision, recall, and F1-score, also showed improvement after augmentation. This study concludes that facial accessories augmentation is more effective in improving the accuracy and robustness of face recognition models compared to geometric augmentation.Keywords: augmentation; deep learning; face recognition; glasses. Abstrak: Pengenalan wajah berbasis deep learning telah menjadi salah satu teknologi penting dalam berbagai aplikasi. Namun, sistem ini sering kali menghadapi tantangan dalam kondisi dunia nyata, seperti saat wajah tertutup sebagian oleh aksesori seperti masker atau kacamata. Penelitian ini bertujuan untuk mengevaluasi pengaruh augmentasi data dengan menambahkan aksesori wajah (masker, kacamata, dan kombinasi keduanya) serta augmentasi geometris terhadap akurasi sistem pengenalan wajah. Metode yang digunakan melibatkan tiga kategori dataset: dataset asli tanpa augmentasi (kategori 1), dataset dengan augmentasi aksesoris wajah (kategori 2), dan dataset dengan augmentasi geometris (kategori 3). Augmentasi data dilakukan pada dataset pelatihan untuk meningkatkan keberagaman, diikuti dengan proses deteksi wajah menggunakan SCRFD dan ekstraksi fitur dengan ArcFace. Model kemudian dilatih menggunakan Multi-Layer Perceptron (MLP). Hasil penelitian menunjukkan bahwa augmentasi aksesoris wajah (kategori 2) memberikan peningkatan signifikan pada akurasi model, mencapai 99%, sedangkan kategori 3 dengan augmentasi geometris mencapai akurasi 91%. Metrik evaluasi lainnya, seperti precision, recall, dan F1-score, juga menunjukkan peningkatan setelah augmentasi. Penelitian ini menyimpulkan bahwa augmentasi aksesoris wajah lebih efektif dalam meningkatkan akurasi dan ketahanan model pengenalan wajah dibandingkan dengan augmentasi geometris.Kata kunci: augmentasi; deep learning; kacamata; pengenalan wajah.

Copyrights © 2025






Journal Info

Abbrev

jurteksi

Publisher

Subject

Computer Science & IT

Description

JURTEKSI (Jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by STMIK Royal Kisaran. This journal published twice a year on December and June. This journal contains a collection of research in information technology and computer ...