Claim Missing Document
Check
Articles

Found 5 Documents
Search

PERBEDAAN DUKUNGAN SOSIAL TEMAN SEBAYA PADA SISWA ABK (ANAK BERKEBUTUHAN KHUSUS) DITINJAU DARI JENIS KELAMIN Hidayat, Ahmad Nur; Sholichah, Ima Fitri
PSIKOSAINS (Jurnal Penelitian dan Pemikiran Psikologi) Vol 20 No 1 (2025)
Publisher : Universitas Muhammadiyah Gresik

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30587/psikosains.v20i1.9483

Abstract

Background: Stigma in society regarding gender is something that has various characteristics, both female and male. Likewise in terms of social support, women who are often considered gentle, and men who are often considered more assertive, can provide social support to ABK (Children with Special Needs) students differently. Objective: The purpose of this study was to empirically determine the differences in Peer Social Support for ABK (Children with Special Needs) Students Reviewed from Gender. Method: This study involved the population of Public Elementary Schools in Surabaya that permitted research with accidental sampling techniques, obtaining 114 respondents. Data was collected using a social support questionnaire and biodata to determine the respondents' gender. Result: Based on the results of the hypothesis testing, the Mann-Whitney test score was obtained with a p-value of 0.209, meaning that there was no significant difference between peer social support for ABK (Children with Special Needs) students of female and male gender. Conclusion: The findings of this study are narrowed down from previous studies, namely here focusing on peer social support.
THE EFFECT OF FACIAL ACCESSORY AUGMENTATION ON THE ACCURACY OF DEEP LEARNING-BASED FACIAL RECOGNITION SYSTEMS Hidayat, Ahmad Nur; Suciati, Nanik; Saikhu, Ahmad
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 3 (2025): Juni 2025
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3846

Abstract

Abstract: Face recognition based on deep learning has become an important technology in many areas. However, these systems often face challenges in real-world conditions, such as when the face is partially covered by accessories such as masks or glasses. This study aims to evaluate the effect of data augmentation by adding facial accessories (masks, glasses, and a combination of both) and geometric augmentation on the accuracy of face recognition systems. There are three types of datasets used in this method: the original dataset (category 1), the dataset with facial accessories augmentation (category 2), and the dataset with geometric augmentation (category 3). Data augmentation was performed on the training dataset to increase diversity, followed by the face detection process using SCRFD and feature extraction with ArcFace. The model was then trained using Multi-Layer Perceptron (MLP). Based on the results, adding face accessories (category 2) made the model a lot more accurate, hitting 99% accuracy. In category 3, adding geometric features improved accuracy to 91%. Other evaluation metrics, such as precision, recall, and F1-score, also showed improvement after augmentation. This study concludes that facial accessories augmentation is more effective in improving the accuracy and robustness of face recognition models compared to geometric augmentation.Keywords: augmentation; deep learning; face recognition; glasses. Abstrak: Pengenalan wajah berbasis deep learning telah menjadi salah satu teknologi penting dalam berbagai aplikasi. Namun, sistem ini sering kali menghadapi tantangan dalam kondisi dunia nyata, seperti saat wajah tertutup sebagian oleh aksesori seperti masker atau kacamata. Penelitian ini bertujuan untuk mengevaluasi pengaruh augmentasi data dengan menambahkan aksesori wajah (masker, kacamata, dan kombinasi keduanya) serta augmentasi geometris terhadap akurasi sistem pengenalan wajah. Metode yang digunakan melibatkan tiga kategori dataset: dataset asli tanpa augmentasi (kategori 1), dataset dengan augmentasi aksesoris wajah (kategori 2), dan dataset dengan augmentasi geometris (kategori 3). Augmentasi data dilakukan pada dataset pelatihan untuk meningkatkan keberagaman, diikuti dengan proses deteksi wajah menggunakan SCRFD dan ekstraksi fitur dengan ArcFace. Model kemudian dilatih menggunakan Multi-Layer Perceptron (MLP). Hasil penelitian menunjukkan bahwa augmentasi aksesoris wajah (kategori 2) memberikan peningkatan signifikan pada akurasi model, mencapai 99%, sedangkan kategori 3 dengan augmentasi geometris mencapai akurasi 91%. Metrik evaluasi lainnya, seperti precision, recall, dan F1-score, juga menunjukkan peningkatan setelah augmentasi. Penelitian ini menyimpulkan bahwa augmentasi aksesoris wajah lebih efektif dalam meningkatkan akurasi dan ketahanan model pengenalan wajah dibandingkan dengan augmentasi geometris.Kata kunci: augmentasi; deep learning; kacamata; pengenalan wajah.
Implementasi XGBoost dalam Klasifikasi Gagal Ginjal Kronis Menggunakan Dataset Chronic Kidney Disease Abdillah, Muhammad; Sarira, Brayen Tisra; Hidayat, Ahmad Nur; Fauzan, Ahmad Nur; Nurhidayat, Rifki; Septiarini, Anindita; Puspitasari, Novianti
JATISI Vol 12 No 3 (2025): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)
Publisher : Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/jatisi.v12i3.11546

Abstract

Chronic Kidney Disease (CKD) is a serious health issue that can lead to death if not detected early. To support early detection, this study applies the eXtreme Gradient Boosting (XGBoost) algorithm to classify patients at risk of CKD. The dataset used is the Chronic Kidney Disease Dataset from Kaggle, consisting of 400 patient records and 26 clinical attributes. Preprocessing involved imputing missing values and converting categorical features into numerical form. The model was evaluated using accuracy, precision, recall, and F1-score metrics. The results show that XGBoost achieved 99% accuracy, with 98% precision and 100% recall, indicating excellent performance in binary classification tasks. This study demonstrates that XGBoost is a reliable algorithm for automatic prediction of chronic kidney disease. Keywords: XGBoost, chronic kidney disease, classification, machine learning
Perspektif Kebijakan dan Praktik: Kesiapan Puskesmas di Indonesia terhadap Tanggap Darurat Kebakaran dalam Kajian Literatur Fadilah, Sylva Qamara Nur; Hidayat, Ahmad Nur
RADINKA JOURNAL OF HEALTH SCIENCE Vol. 2 No. 1 (2024): Radinka Journal of Health Science (RJHS)
Publisher : RADINKA JAYA UTAMA PUBLISHER

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56778/rjhs.v2i1.299

Abstract

Community health centers, as providers of public health services at the local level, have a crucial role in saving lives and minimizing the impact of fires on health services. This study aims to assess the readiness of community health centers in Indonesia for emergency response to fires. This study uses a literature study approach. This article uses a narrative synthesis method and follows the PRISMA guidelines. Data were collected through a systematic search in ScienceDirect and Google Scholar with a limit of the last five years. The results of the literature study indicate that, when viewed in terms of human resources, most community health centers have formed a special team for emergency response to fires. In terms of budget, the funds used come from the allocation of community health center funds; for infrastructure, it is adequate with the presence of APAR, detectors, hydrants, and fire alarms. As for fire preparedness, it has followed the provisions of the Ministry of Health. This study concludes that overall, the readiness of community health centers in Indonesia for emergency response to fires is good, but several things need to be improved, especially in terms of human resources.  
THE EFFECT OF FACIAL ACCESSORY AUGMENTATION ON THE ACCURACY OF DEEP LEARNING-BASED FACIAL RECOGNITION SYSTEMS Hidayat, Ahmad Nur; Suciati, Nanik; Saikhu, Ahmad
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3846

Abstract

Abstract: Face recognition based on deep learning has become an important technology in many areas. However, these systems often face challenges in real-world conditions, such as when the face is partially covered by accessories such as masks or glasses. This study aims to evaluate the effect of data augmentation by adding facial accessories (masks, glasses, and a combination of both) and geometric augmentation on the accuracy of face recognition systems. There are three types of datasets used in this method: the original dataset (category 1), the dataset with facial accessories augmentation (category 2), and the dataset with geometric augmentation (category 3). Data augmentation was performed on the training dataset to increase diversity, followed by the face detection process using SCRFD and feature extraction with ArcFace. The model was then trained using Multi-Layer Perceptron (MLP). Based on the results, adding face accessories (category 2) made the model a lot more accurate, hitting 99% accuracy. In category 3, adding geometric features improved accuracy to 91%. Other evaluation metrics, such as precision, recall, and F1-score, also showed improvement after augmentation. This study concludes that facial accessories augmentation is more effective in improving the accuracy and robustness of face recognition models compared to geometric augmentation.Keywords: augmentation; deep learning; face recognition; glasses. Abstrak: Pengenalan wajah berbasis deep learning telah menjadi salah satu teknologi penting dalam berbagai aplikasi. Namun, sistem ini sering kali menghadapi tantangan dalam kondisi dunia nyata, seperti saat wajah tertutup sebagian oleh aksesori seperti masker atau kacamata. Penelitian ini bertujuan untuk mengevaluasi pengaruh augmentasi data dengan menambahkan aksesori wajah (masker, kacamata, dan kombinasi keduanya) serta augmentasi geometris terhadap akurasi sistem pengenalan wajah. Metode yang digunakan melibatkan tiga kategori dataset: dataset asli tanpa augmentasi (kategori 1), dataset dengan augmentasi aksesoris wajah (kategori 2), dan dataset dengan augmentasi geometris (kategori 3). Augmentasi data dilakukan pada dataset pelatihan untuk meningkatkan keberagaman, diikuti dengan proses deteksi wajah menggunakan SCRFD dan ekstraksi fitur dengan ArcFace. Model kemudian dilatih menggunakan Multi-Layer Perceptron (MLP). Hasil penelitian menunjukkan bahwa augmentasi aksesoris wajah (kategori 2) memberikan peningkatan signifikan pada akurasi model, mencapai 99%, sedangkan kategori 3 dengan augmentasi geometris mencapai akurasi 91%. Metrik evaluasi lainnya, seperti precision, recall, dan F1-score, juga menunjukkan peningkatan setelah augmentasi. Penelitian ini menyimpulkan bahwa augmentasi aksesoris wajah lebih efektif dalam meningkatkan akurasi dan ketahanan model pengenalan wajah dibandingkan dengan augmentasi geometris.Kata kunci: augmentasi; deep learning; kacamata; pengenalan wajah.