Journal Of Artificial Intelligence And Software Engineering
Vol 5, No 2 (2025): Juni On-Progress

Comparison of the Performance of Fuzzy Tsukamoto and Fuzzy Mamdani in an Internet of Things Based Grape Greenhouse Control System

Rusadi, Athirah (Unknown)
Ula, Munirul (Unknown)
Daud, Muhammad (Unknown)
Nurdin, Nurdin (Unknown)
Hasibuan, Arnawan (Unknown)



Article Info

Publish Date
20 Jun 2025

Abstract

The application of Internet of Things in agriculture, particularly in grape greenhouses, enables automated environmental control to enhance efficiency and crop yield. This study compares the performance of two fuzzy logic methods, Fuzzy Mamdani and Fuzzy Tsukamoto, in a temperature and humidity control system based on IoT using the DHT22 sensor. The system is designed to automate irrigation via actuators based on sensor data. Performance evaluation was conducted using RMSE, MAE, and standard deviation metrics. The results show that the Tsukamoto method achieved lower RMSE 2.6928, MAE 2.2625, and standard deviation 1.1080 compared to the Mamdani method, which recorded RMSE of 2.9039, MAE of 2.3947, and standard deviation of 1.9268. However, a paired t-test yielded a p-value of 0.0690 0.05, indicating no statistically significant performance difference. Thus, while Fuzzy Tsukamoto appears superior in metrics, both methods are considered equally effective for controlling environmental conditions in grape greenhouses.The application of Internet of Things in agriculture, particularly in grape greenhouses, enables automated environmental control to enhance efficiency and crop yield. This study compares the performance of two fuzzy logic methods, Fuzzy Mamdani and Fuzzy Tsukamoto, in a temperature and humidity control system based on IoT using the DHT22 sensor. The system is designed to automate irrigation via actuators based on sensor data. Performance evaluation was conducted using RMSE, MAE, and standard deviation metrics. The results show that the Tsukamoto method achieved lower RMSE 2.6928, MAE 2.2625, and standard deviation 1.1080 compared to the Mamdani method, which recorded RMSE of 2.9039, MAE of 2.3947, and standard deviation of 1.9268. However, a paired t-test yielded a p-value of 0.0690 0.05, indicating no statistically significant performance difference. Thus, while Fuzzy Tsukamoto appears superior in metrics, both methods are considered equally effective for controlling environmental conditions in grape greenhouses.

Copyrights © 2025






Journal Info

Abbrev

JAISE

Publisher

Subject

Computer Science & IT

Description

Artificial Intelligence Natural Language Processing Computer Vision Robotics and Navigation Systems Decision Support System Implementation of Algorithms Expert System Data Mining Enterprise Architecture Design & Management Software & Networking Engineering ...