Claim Missing Document
Check
Articles

SOSIALISASI PENGGUNAAN MEDIA SOSIAL DAN INTERNET YANG AMAN UNTUK GURU SMK NEGERI 1 LHOKSEUMAWE munirul ula; Rizal Tjut Adek; Muhammad Muhammad; Mukhlis Mukhlis; Muhammad Fauzan; Bustami Bustami
RAMBIDEUN : Jurnal Pengabdian Kepada Masyarakat Vol. 5 No. 1 (2022): Rambideun: Jurnal Pengabdian Kepada Masyarakat
Publisher : LPPM Universitas Al Muslim

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51179/pkm.v5i1.818

Abstract

Social media does provide a plethora of fun perks. However, social media and the internet also bring negative impacts and new dangers. Technology of internet can result in many negative things in society when it is not accompanied by knowledge of wise internet use. In this era of globalization, the internet has become a major need in everyday life. The internet has a very good role in helping the role of business, learning, communication and other problems that are found when not using the internet or commonly called the manual method. Not using and following the development of the internet, can lead to lagging business and economic aspects. The method used in this service is direct presentation and workshop. The purpose of the training is to raise awareness about the possible dangers of using social media. The materials presented in this training include cases of fraud through social media, cases of identity theft and others. After that, preventive measures against the threats that may be faced and how to use social media properly are conveyed in this socialization. This training and socialization is very useful to raise awareness of teachers about the dangers that may arise in the use of the internet and social media, so that this knowledge can be conveyed and taught to students at SMK Negeri 1 Lhokseumawe and also the surrounding environment. Key Words: Awareness of social media, healthy and safe Internet, SMK teacher socialization
PELATIHAN PEMBUATAN VIDEO PEMBELAJARAN DARING DENGAN MENGGUNAKAN POWTOON DAN SCREENCASTIFY Sayed Fachrurrazi; Rizky Putra Phonna; Yessi Apprilia; Munirul Ula
RAMBIDEUN : Jurnal Pengabdian Kepada Masyarakat Vol. 5 No. 1 (2022): Rambideun: Jurnal Pengabdian Kepada Masyarakat
Publisher : LPPM Universitas Al Muslim

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51179/pkm.v5i1.819

Abstract

In time of the Covid-19 pandemic, with the necessity to run online lectures, there are obstacles in designing an online learning media that is easy to use by teachers and easy to understand by students. This community service program provides training on how to make learning videos by utilizing the Powtoon and Screencastify applications for teachers which is carried out by mentoring to improve teacher abilities. The sustainability of the program is fully returned to the teachers who participated in the training to continue the implementation of this learning application after the program is finished. From the results of the questionnaire evaluating the results of the training, it can be seen that there are positive results in terms of increasing competitiveness and values ​​in the field of education for fostered partners. This is shown by when the material is delivered, participants are given the option to practice making learning videos in groups and individually using the Powtoon and Screencastify applications. The participants were very enthusiastic about participating in this training. This is because they have just used these two applications for making learning videos. All of them were satisfied with this activity and the participants hoped that there would be retraining activities in the future.
PELATIHAN DAN PENDAMPINGAN DIGITAL MARKETING BAGI PELAKU USAHA KULINER DI KOTA BIREUEN munirul ula; Rizal Tjut Adek; Muhammad Muhammad; Bustami Bustami; Fasdarsyah Fasdarsyah; Mukhlis Mukhlis
RAMBIDEUN : Jurnal Pengabdian Kepada Masyarakat Vol. 5 No. 1 (2022): Rambideun: Jurnal Pengabdian Kepada Masyarakat
Publisher : LPPM Universitas Al Muslim

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51179/pkm.v5i1.837

Abstract

During the Covid-19 disaster, the condition of Micro, Small and Medium Enterprises (MSMEs) in Bireuen Regency was very alarming. The impact of the pandemic outbreak and regulations related to the Enforcement of Restrictions on Community Activities have caused sales turnover to decline, therefore culinary entrepreneurs are required to be more creative and innovative in conducting marketing activities. Digital marketing activities is one solution to increase sales during this pandemic. However, there are still many culinary business actors in Bireuen Regency who have not mastered digital marketing strategies. Therefore, digital marketing training and assistance is needed for culinary entrepreneurs in Bireuen Regency to be able to compete and innovate to increase sales turnover in this pandemic era. This Digital Marketing Training and Assistance aims to provide knowledge and skills for entrepreneurs in Bireuen Regency to increase sales through digital marketing. The results of the evaluation of this service activity are very useful for increasing the knowledge and expertise of participants in online marketing. Through this training and mentorship activity, culinary business actors in Bireuen Regency can improve social media marketing, generate marketing material to assist digital marketing, and raise sales turnover.
Emarketplace Performance Analysis Using PIECES Method Munirul Ula; Rizal Tjut Adek; Bustami Bustami
International Journal of Engineering, Science and Information Technology Vol 1, No 4 (2021)
Publisher : Master Program of Information Technology, Universitas Malikussaleh, Aceh Utara, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (360.5 KB) | DOI: 10.52088/ijesty.v1i4.138

Abstract

E-Marketplace is a place in cyberspace where prospective buyers meet each other to conduct transactions electronically through the internet medium. Like the market in the conventional sense, namely a meeting place for sellers and buyers, in the E-Marketplace, various companies in the world also interact without being limited by the territory of space (geography) and time. Therefore, an analysis of the performance of the website is needed to ensure the performance of the Bireuen emarketplace (meukat.com) website can run effectively in the future. The role of this emarketplace is very important, therefore in building emarketplace we must pay attention to several factors, namely: performance, information, economic, control, efficiency, and service, which is better known as the PIECES method. To analyze the performance of our self-developed emarketplace, was done by PIECES method. While the testing method in the performance analysis of the website uses the GTMetrix and Google Transparency applications. The results of the PIECES questionnaire on the dimensions of Information, Economy, Efficiency, and Service. The average score for the all dimensions is moderate, it is ranging from 42.8% to 51.45% and is in line with the expectations. The GTMetric test results of the Emarketplace website, shows that the average performance grade is 66% or grade D. This means that the quality of the Emarketplace website based on the index generated by Google is still low. It should be improved to provide good quality of service for users in future. The Emarketplace are also being analyzed by the Google transparency report, the result is “no unsafe content” was found, means this website is safe to visit. There are no applications that harm the users.
APLIKASI TEKNOLOGI SISTEM KONTROL FUZZY INFERENCE SYSTEM DALAM PENENTUAN KRITERIA PRIORITAS KONSENTRASI PEMBANGUNAN GAMPONG Rozzi Kesuma Dinata; Munirul Ula
TECHSI - Jurnal Teknik Informatika Vol 9, No 2 (2017)
Publisher : Teknik Informatika Universitas Malikussaleh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/techsi.v9i2.218

Abstract

Konsentrasi prioritas pembangunan gampong merupakan salah satu mekanisme program pemberdayaan masyarakat yang digunakan pemerintah dalam upaya penanggulangan daerah tertinggal. Penanggulangan ini dilakukan melalui penyediaan kebutuhan dasar, pembangunan sarana dan prasarana, serta pengembangan potensi ekonomi lokal yang dilakukan secara terpadu dan berkelanjutan di wilayah pergampongan. Program ini dilakukan untuk lebih mendorong pemerintah dalam peningkatan kualitas hidup, kesejahteraan dan kemandirian masyarakat di gampong. Penyaluran dan pengelolaan dana yang tidak tepat akan mengakibatkan tersendatnya upaya pemerintah dalam menyelesaikan konsentrasi pembangunan gampong. Oleh karena itu dibutuhkan sebuah sistem yang dapat mengontrol penyaluran dana untuk mengawasi dana dan program prioritas gampong di wilayah gampong Alue Awe kecamatan Muara Dua Sistem Kontrol Fuzzy Inference digunakan untuk mengontrol nilai masing-masing variabel berupa tingkat kebutuhan, akses sumber daya, tingkat kepentingan, tingkat partisipasi dan tingkat pembangunan agar nilai tersebut tetap berada pada batas normal. Nilai yang telah di fuzzy kemudian akan dimasukkan ke dalam  aspek-aspek penilaian promethee. Hasil nilai perangkingan promethee tertinggi akan dijadikan prioritas untuk kegiatan konsentrasi pembangunan gampong. Hasil penelitian ini dapat membantu tim pengelola serta masyarakat dalam menentukan prioritas konsentrasi pembangunan yaitu mengenai jenis kegiatan yang sesuai dengan keadaan gampong dan masyarakat itu sendiri. Sistem ini akan berbasis web agar semua elemen masyarakat dapat melihat penyaluran dana dan perkembangan gampong di alue Awe.
Evaluasi Kinerja Software Web Penetration Testing Munirul Ula
TECHSI - Jurnal Teknik Informatika Vol 11, No 3 (2019)
Publisher : Teknik Informatika Universitas Malikussaleh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/techsi.v11i3.1996

Abstract

Website sudah menjadi bagian penting dalam setiap aspek kehidupan kita sehari-hari. Dari belanja online hingga bersosialisasi, semuanya tersedia dalam satu klik melalui gatget. Setiap website adalah unik dengan caranya sendiri, mulai dari coding hingga eksekusi, tetapi secara umum di setiap website terdapat celah keamanan yang memudahkan tersusupi oleh para hacker. Oleh karena itu perlu dilakukan scanning celah keamanan yang ada pada sebuah website. Dalam artikel ini, berbagai macam program pendeteksi celah keamanan aplikasi website telah diperiksa dan dievaluasi secara terperinci untuk mengetahui program scanner mana yang paling cocok digunakan untuk mendeteksi kelemahan keamanan sebuah website. Program-program scanner keamanan tersebut memberikan informasi tentang cara melakukan berbagai skenario serangan terhadap website sampel. Artikel ini juga menunjukkan kelebihan dan kekurangan kinerja dari program yang diuji.
Fuzzy C-Means with Borda Algorithm in Cluster Determination System for Food Prone Areas in Aceh Utara Mutammimul Ula; Munirul Ula; Desvina Yulisda; Susanti Susanti
ILKOM Jurnal Ilmiah Vol 15, No 1 (2023)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v15i1.1481.21-31

Abstract

In this research, the clustering of food prone areas in Aceh Utama is based on the Index Ketahanan Pangan (IKP) indicators compiled by Badan Ketahanan Pangan (BKP) using Fuzzy C-Means (FCM) and Borda algorithms. The fuzzy C-Means algorithm was used to classify food-prone areas with three clusters: very prone, moderately prone, and prone. The Borda algorithm was used to choose the most prone area from very prone clusters, which are considered urgently to be followed up by decision-makers. Based on the research results, it was found that in the aspect of food availability, four sub-districts are moderately prone, 10 are prone, and 13 are very prone. Regarding food affordability, it found that 12 sub-districts are moderately prone, seven are prone, and eight are very prone. Regarding food utilization, one sub-district is moderately prone, three are prone, and 23 are very prone. The results of voting using the Borda algorithm in very prone clusters are obtained Sawang District from the aspect of food availability, Syamtalira Aron District from the aspect of food affordability, and Lapang District from the aspect of food utilization. The clustering system is built based on the web using the PHP programming language.
ANALISIS SENTIMEN REVIEW CUSTOMER TERHADAP PERUSAHAAN EKSPEDISI JNE, J&T EXPRESS DAN POS INDONESIA MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM) Nurul Aula; Munirul Ula; Lidya Rosnita
JOURNAL OF INFORMATICS AND COMPUTER SCIENCE Vol 9, No 1 (2023): April 2023
Publisher : Ubudiyah Indonesia University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33143/jics.v9i1.2947

Abstract

Abstrak— Kepuasan customer adalah masalah yang harus diamati pada sebuah perusahaan, karena customer adalah alasan mengapa suatu perusahaan masih berdiri dan sukses. Perusahaan ekspedisi JNE, J&T, dan Pos Indonesia mempunyai akun twitter layanan customer yaitu @Jnecare, @J&texpressid dan @Posindonesia. Akun ini digunakan untuk layanan customer secara online yang disediakan untuk menyampaikan pendapat, kritik, saran atau keluhan pelanggan. Agar dapat mengolah komentar yang banyak tentu membutuhkan waktu yang lebih besar jika hanya dilakukan secara sederhana. Penelitian ini bertujuan untuk menganalisis sentimen perusahaan ekpedisi mana yang lebih unggul dari beberapa layanan jasa ekspedisi, metode yang akan digunakan yaitu metode Support Vector Machine (SVM). Berdasarkan hasil penelitian diperoleh performa tertinggi yaitu pada ekpedisi J&T Express menggunakan algoritma Support Vector Machine menghasikan accuracy sebesar 85%, precision sebesar 59.35%, recall sebesar 58.67%, dan f1-score sebesar 58.01% selanjutnya pada ekpedisi JNE menghasikan accuracy sebesar 82.29%, precision sebesar 54.54%, recall sebesar 55.83%, dan f1-score sebesar 54.97% sedangkan pada Pos Indonesia menghasikan accuracy sebesar 77.78%, precision sebesar 35.9%, recall sebesar 58.67%, dan f1-score sebesar 33.85%. Dari hasil perbandingan ketiga jasa ekspedisi tersebut terbukti bahwa algoritma SVM mampu menghasilkan performa yang tinggi karena tidak memiliki satupun nilai yang tidak wajar baik pada performa accuracy, precision, recall dan F1-Score.Kata kunci: Sentimen, customer, ekspedisi, SVMAbstract—Customer satisfaction is a problem that must be observed in a company, because customers are the reason why a company is still standing and successful. JNE, J&T and Pos Indonesia expedition companies have customer service twitter accounts, namely @Jnecare, @J&texpressid and @Posindonesia. This account is used for online customer service provided to convey opinions, criticisms, suggestions or customer complaints. In order to be able to process a lot of comments, of course it takes more time if it's only done in a simple way. This study aims to analyze which shipping company sentiment is superior to some courier services, the method to be used is the Support Vector Machine (SVM) method. Based on the results of the study, the highest performance was obtained on the J&T Express expedition using the Support Vector Machine algorithm resulting in an accuracy of 85%, a precision of 59.35%, a recall of 58.67%, and an f1-score of 58.01% then on a JNE expedition it produced an accuracy of 82.29%, a precision of 54.54%, recall of 55.83%, and f1-score of 54.97% while Pos Indonesia produced an accuracy of 77.78%, precision of 35.9%, recall of 58.67%, and f1-score of 33.85%. From the results of the comparison of the three shipping services it is proven that the SVM algorithm is capable of producing high performance because it does not have any unreasonable values in terms of accuracy, precision, recall and F1-Score performance. Keywords: Sentiment, customer, expedition, SVM
Comparing Long Short-Term Memory and Random Forest Accuracy for Bitcoin Price Forecasting Munirul Ula; Veri Ilhadi; Zailani Mohamed Sidek
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 23 No 2 (2024)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i2.3267

Abstract

Bitcoin’s daily value fluctuations are very dynamic. Understanding its rapid and intricate price movements demands advanced techniques for processing complex data. This research aims to compare the accuracy of two machine learning methods, Random Forest (RF) and Long Short-Term Memory (LSTM), in predicting Bitcoin price. This research employs RF and LSTM algorithms to forecast Bitcoin prices using a two-year Yahoo Finance dataset. The evaluation metrics used were accuracy based on Mean Absolute Percentage Error (MAPE) and computational power (CPU-Z). As a result of this research, the LSTM model demonstrates higher accuracy compared to the RF model. MAPE reveals LSTM’s precision of 99.8% and RF’s accuracy of 90.1%. Regarding computational time and resources, RF shows slightly better performance than LSTM. The visual comparison further emphasizes LSTM’s better performance in predicting Bitcoin prices, highlighting its potential for informed decision-making in cryptocurrency trading. This research contributes valuable insights into the effectiveness, strengths, and weaknesses of LSTM and RF models in predicting cryptocurrency trends.
Analisis Sentimen Cyberbullying pada Media Sosial Twitter menggunakan Metode Support Vector Machine dan Naïve Bayes Classifier Ula, Munirul; Fachrurrazi, Sayed
TECHSI - Jurnal Teknik Informatika Vol. 14 No. 2 (2023)
Publisher : Teknik Informatika Universitas Malikussaleh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/techsi.v14i2.12103

Abstract

Media sosial yang paling popular yaitu twitter yang penggunanya dapat menuangkan opini mereka secara publik dan cepat mendapatkan informasi dan tanggapan dari berbagai sudut pandang. Tetapi dibalik banyak dampak positif oleh sosial media, ada pula dampak negatif bagi penggunanya khususnya pada media sosial twitter, salah satunya adalah Cyberbullying. Tindakan Cyberbullying berdampak negatif pada korban tetapi juga pelaku karena dapat dituntut pidana berdasarkan UU No.11 Tahun 2008 mengenai informasi dan transaksi elektronik (UU ITE). Oleh karena itu dilakukanlah penelitian analisis sentimen Cyberbullying pada pengguna media sosial twitter untuk mengklasifikasikan tweet yang bermuatan negatif dan netral menggunakan metode support vector machine dan naïve bayes classifier. Data inputan pada analisis ini berupa tweet yang diperoleh dari API twitter dengan memasukkan 10 keyword yang berpotensi menimbulkan Cyberbullying yang tiap katanya tidak lebih dari 100 data tweet. Output pada penelitian ini berupa klasifikasi sentimen Cyberbullying dan sentimen netral yang telah melewati preprocessing. Dari hasil pengujian diperoleh akurasi menggunakan metode Support vector machine sebesar 72% dan akurasi menggunakan metode Naïve Bayes sebesar 69%.