Industri telekomunikasi menghadapi tantangan besar dalam mempertahankan basis pelanggannya, di mana churn atau perpindahan pelanggan ke penyedia layanan pesaing menjadi isu krusial yang secara langsung memengaruhi kinerja finansial, efisiensi operasional, serta daya saing perusahaan dalam jangka panjang. Untuk menjawab tantangan ini, diperlukan pendekatan analitik yang mampu memprediksi kemungkinan churn secara akurat. Penelitian ini bertujuan untuk mengevaluasi efektivitas jaringan saraf Bidirectional Long Short-Term Memory (BiLSTM) dalam memprediksi churn pelanggan PT Medianusa Permana melalui analisis data sekuensial temporal. Dataset yang digunakan mencakup data pelanggan dari April 2020 hingga Mei 2023, dengan berbagai variabel prediktif seperti jenis layanan, media transmisi, alokasi bandwidth, status langganan, status kemitraan, ketentuan kontrak, serta riwayat keluhan. Arsitektur BiLSTM yang diterapkan terdiri dari tiga lapisan LSTM bidirectional, dirancang untuk memaksimalkan pengenalan pola temporal sekaligus mengurangi overfitting guna meningkatkan akurasi model. Validasi dilakukan melalui teknik cross-validation dan confusion matrix, yang menunjukkan bahwa model mampu mencapai akurasi rata-rata sebesar 89% serta performa klasifikasi yang tinggi dalam mengidentifikasi pelanggan yang churn maupun tidak churn. Hasil penelitian ini menegaskan bahwa BiLSTM efektif dalam menangkap indikator perilaku halus yang mendahului churn, dan dapat menjadi dasar yang kuat dalam pengembangan strategi retensi pelanggan yang lebih proaktif dan berbasis data.
                        
                        
                        
                        
                            
                                Copyrights © 2025