Journal Of Artificial Intelligence And Software Engineering
Vol 5, No 2 (2025): Juni On-Progress

Lung Disease Detection Using Gradient-Weighted Class Activation Mapping (Grad-CAM)

Sofiyah, Wan (Unknown)
Negara, Benny Sukma (Unknown)
Irsyad, Muhammad (Unknown)
Iskandar, Iwan (Unknown)
Yanto, Febi (Unknown)



Article Info

Publish Date
20 Jun 2025

Abstract

Early detection of respiratory diseases such as Coronavirus Disease-19 (Covid-19) and Pneumonia is crucial for accelerating treatment and preventing more serious complications. This study proposes a method for classifying Chest X-ray (CXR) images using a Convolutional Neural Network (CNN) to distinguish between Covid-19, Pneumonia, and normal lungs. Model training involved exploring various hyperparameter combinations to find the optimal configuration. The best results were achieved with a learning rate of 0.001, 50 epochs, and a batch size of 32, yielding an accuracy of 96.33%. Evaluation was conducted using accuracy, precision, recall, F1-score, and confusion matrix metrics. This study uses Gradient-Weighted Class Activation Mapping (Grad-CAM) as a transparent interpretation tool for model decisions. The main contribution of this study is the application of Grad-CAM in multi-class CXR classification to enhance model interpretability in lung disease diagnosis.

Copyrights © 2025






Journal Info

Abbrev

JAISE

Publisher

Subject

Computer Science & IT

Description

Artificial Intelligence Natural Language Processing Computer Vision Robotics and Navigation Systems Decision Support System Implementation of Algorithms Expert System Data Mining Enterprise Architecture Design & Management Software & Networking Engineering ...