Jurnal Informatika Global
Vol. 16 No. 2: August 2025

Klasifikasi Sifat Huruf Hijaiyah Dengan Metode Convolutional Neural Network (CNN)

Salamah, Siti Ruhu (Unknown)
Asriyanik (Unknown)
Apriandari, Winda (Unknown)



Article Info

Publish Date
02 Jun 2025

Abstract

Understanding the science of Tajweed, particularly the articulatory properties of hijaiyah letters, plays a crucial role in enchancing the quality of Quranic recitation. Despite its importance, research focused on classifying these properties within Quranic texts remains limited. Existing Tajweed learning tools often introduce letters at a basic level without utilizing deep learning technologies. This study proposes a CNN-based model to classify the phonetic characteristics of hijaiyah letters in Quranic texts. The dataset consists of image samples taken from quran.com, each labeled according to the phonetic categories outlined in the Tartil Al-Quran guidebook. The methodology includes image preprocessing, CNN training, and performance evaluation using accuracy, precision, recall, and F1-score. This research does not address audio or pronunciation aspects. Results show that the model achieved up to 99% classification accuracy. The findings highlight the potential of AI-powered tools to support Tajweed learning and contribute to the development of intelligent, technology-based Quranic education systems. This research serves as a foundation for future applications that blend classical Islamic knowledge with modern digital solutions.

Copyrights © 2025






Journal Info

Abbrev

IG

Publisher

Subject

Computer Science & IT

Description

Journal of global informatics publish articles on architectures from various perspectives, covering both literary and fieldwork studies. The journal, serving as a forum for the study of informatics, system information, computer system, informatics management, supports focused studies of particular ...