Jurnal Sisfokom (Sistem Informasi dan Komputer)
Vol. 14 No. 2 (2025): MEY

Comparative Analysis of Random Forest and Support Vector Machine for Sundanese Dialect Classification Using Speech Recognition Features

Anshor, Abdull Halim (Unknown)
Wiyatno, Tri Ngudi (Unknown)



Article Info

Publish Date
26 May 2025

Abstract

This study investigates the classification of West and South Sundanese dialects using Random Forest (RF) and Support Vector Machine (SVM). Using a dataset of 100 recordings with features extracted via Mel Frequency Cepstral Coefficient (MFCC), models were evaluated by accuracy, precision, recall, and F1-score. Results show RF achieved an accuracy of 93.33%, outperforming SVM's 73.33%. The analysis demonstrates that RF is more reliable in distinguishing dialectal features. This research contributes to regional speech recognition, supporting language preservation and improved dialectal analysis.

Copyrights © 2025






Journal Info

Abbrev

sisfokom

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

Jurnal Sisfokom merupakan singkatan dari Jurnal Sistem Informasi dan Komputer. Jurnal ini merupakan kolaborasi antara sivitas akademika STMIK Atma Luhur dengan perguruan tinggi maupun universitas di Indonesia. Jurnal ini berisi artikel ilmiah dari peneliti, akademisi, serta para pemerhati TI. Jurnal ...