Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparative Analysis of Random Forest and Support Vector Machine for Sundanese Dialect Classification Using Speech Recognition Features Anshor, Abdull Halim; Wiyatno, Tri Ngudi
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 14 No. 2 (2025): MEY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v14i2.2347

Abstract

This study investigates the classification of West and South Sundanese dialects using Random Forest (RF) and Support Vector Machine (SVM). Using a dataset of 100 recordings with features extracted via Mel Frequency Cepstral Coefficient (MFCC), models were evaluated by accuracy, precision, recall, and F1-score. Results show RF achieved an accuracy of 93.33%, outperforming SVM's 73.33%. The analysis demonstrates that RF is more reliable in distinguishing dialectal features. This research contributes to regional speech recognition, supporting language preservation and improved dialectal analysis.