Divorce in Indonesia shows a significant increasing trend and has a broad social impact. This study aims to identify the most dominant causes of divorce in 34 provinces in Indonesia using the Extreme Gradient Boosting (XGBoost) machine learning algorithm. Secondary quantitative data from the Central Bureau of Statistics in 2024 were analyzed by pre-processing, data sharing, model training, and performance evaluation. The results showed that constant disputes and quarrels were the main causes of divorce, followed by substance abuse and forced marriage. The developed XGBoost model achieved 75% accuracy in classifying the level of divorce risk. These findings provide new insights into understanding the social factors that influence divorce and can be the basis for designing more effective prevention strategies.
Copyrights © 2025