Cyberbullying merupakan fenomena sosial yang se- makin meningkat seiring dengan meningkatnya penggunaan media sosial, dan seringkali menyebabkan dampak psikologis serta emosional yang merugikan, terutama melalui hate com- ments. Penelitian ini bertujuan untuk mengevaluasi kinerja model IndoBERT dan Cendol dalam mendeteksi komentar kebencian yang berhubungan dengan cyberbullying. Survei terhadap 328 partisipan menghasilkan 64 kata kunci terkait cyberbullying. Proses penelitian mencakup pengumpulan dataset yang berisi kata kunci tersebut, serta pengujian kedua model menggunakan metrik evaluasi seperti akurasi, presisi, recall, dan F1-Score. Hasil eksperimen menunjukkan bahwa model Cendol unggul dengan akurasi sebesar 90,5% pada konfigurasi batch size 15, epoch ke-4, dan learning rate 10-3, sementara IndoBERT hanya mencapai akurasi 36% pada konfigurasi batch size 5, epoch ke- 4, dan learning rate 10-3. Meskipun kedua model menunjukkan potensi dalam mendeteksi ujaran kebencian, model IndoBERT menunjukkan performa yang lebih rendah pada dataset yang digunakan, kemungkinan disebabkan oleh keterbatasan dalam menangani konteks lokal. Penelitian ini memberikan kontribusi signifikan dalam pengembangan teknologi deteksi ujaran keben- cian berbasis bahasa Indonesia, yang dapat diimplementasikan pada berbagai platform media sosial seperti X, Facebook, Insta- gram, dan TikTok untuk mengurangi dampak negatif dari hate comments. Kata Kunci: Cyberbullying, Hate Comments, IndoBERT, Cen- dol, NLP.
                        
                        
                        
                        
                            
                                Copyrights © 2025