International Journal of Electrical and Computer Engineering
Vol 15, No 3: June 2025

A hybrid convolutional neural network-recurrent neural network approach for breast cancer detection through Mask R-CNN and ARI-TFMOA optimization

Sreekala, Keshetti (Unknown)
Yalamati, Srilatha (Unknown)
Lakshmanarao, Annemneedi (Unknown)
Kumari, Gubbala (Unknown)
Kumari, Tanapaneni Muni (Unknown)
Desanamukula, Venkata Subbaiah (Unknown)



Article Info

Publish Date
01 Jun 2025

Abstract

This paper presents a novel hybrid deep learning-based approach for breast cancer detection, addressing critical challenges such as overfitting and performance degradation in varying data conditions. Unlike traditional methods that struggle with detection accuracy, this work integrates a unique combination of advanced segmentation and classification techniques. The segmentation phase leverages Mask region-based convolutional neural network (R-CNN), enhanced by the adaptive random increment-based tomtit flock metaheuristic optimization algorithm (ARI-TFMOA), a novel algorithm inspired by natural flocking behavior. ARI-TFMOA fine-tunes Mask R-CNN parameters, achieving improved feature extraction and segmentation precision while ensuring adaptability to diverse datasets. For classification, a hybrid convolutional neural network-recurrent neural network (CNN-RNN) model is introduced, combining spatial feature extraction by CNNs with temporal pattern recognition by RNNs, resulting in a more nuanced and comprehensive analysis of breast cancer images. The proposed framework achieved significant advancements over existing methods, demonstrating improved performance. This hybrid integration of ARI-TFMOA and Hybrid CNN-RNN models represents a unique contribution, enabling robust, accurate, and efficient breast cancer detection.

Copyrights © 2025






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...