JOURNAL OF APPLIED INFORMATICS AND COMPUTING
Vol. 9 No. 3 (2025): June 2025

Detecting Fake Reviews in E-Commerce: A Case Study on Shopee Using Support Vector Machine and Random Forest

Khoirotulmuadiba Purifyregalia (Unknown)
Khothibul Umam (Unknown)
Nur Cahyo Hendro Wibowo (Unknown)
Maya Rini Handayani (Unknown)



Article Info

Publish Date
19 Jun 2025

Abstract

The increasing popularity of online shopping, particularly on platforms such as Shopee, has made product reviews a significant factor influencing consumer purchasing decisions. However, the presence of fake reviews generated by non-human agents undermines consumer trust and affects platform credibility. This study aims to detect fake reviews on Shopee by applying a text classification approach using Random Forest and Support Vector Machine (SVM) algorithms. A dataset consisting of 3,686 Shopee product reviews was collected and underwent preprocessing steps including data cleaning, normalization, tokenization, and TF-IDF weighting. Review labeling was performed automatically through the Latent Dirichlet Allocation (LDA) method, categorizing reviews into Original (OR) and Computer-Generated (CG). Model performance was evaluated using accuracy, precision, recall, and F1-score metrics. Experimental results show that the SVM algorithm achieved the highest accuracy at 88.84%, outperforming Random Forest which obtained 80.39%. These findings highlight the effectiveness of SVM in handling high-dimensional text data for fake review detection. The study contributes to the application of automated topic modeling (LDA) for labeling e-commerce reviews in the Indonesian context and opens opportunities for further enhancement using larger datasets and deep learning-based models to improve classification accuracy and scalability.

Copyrights © 2025






Journal Info

Abbrev

JAIC

Publisher

Subject

Computer Science & IT

Description

Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan ...