Penyakit jantung merupakan salah satu penyebab utama kematian yang disebabkan oleh faktor gaya hidup tidak sehat. Untuk mengatasi permasalahan ini, penelitian ini membandingkan algoritma K-Nearest Neighbors (KNN) dan Random Forest (RF) dalam memberikan rekomendasi gaya hidup sehat guna mencegah penyakit jantung. Dataset yang digunakan terdiri dari 1.025 entri dengan 14 fitur, yang telah melalui tahap preprocessing, termasuk normalisasi, seleksi fitur, dan pembagian data 80:20 serta 70:30. Evaluasi model dilakukan menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa Random Forest memiliki akurasi lebih tinggi (99% pada skenario 80:20 dan 98% pada skenario 70:30) dibandingkan KNN (83% dan 86%), serta lebih stabil dalam mengklasifikasikan risiko penyakit jantung. Analisis fitur menunjukkan bahwa Chest Pain Type (CP) atau nyeri dada merupakan faktor paling berpengaruh. Berdasarkan hasil ini, direkomendasikan pola makan sehat, aktivitas fisik teratur, manajemen stres, serta pemeriksaan kesehatan rutin. Kesimpulannya, Random Forest lebih efektif dalam sistem rekomendasi gaya hidup sehat, dan penelitian selanjutnya dapat menggunakan dataset lebih besar dengan variabel tambahan guna meningkatkan akurasi prediksi.
Copyrights © 2025