IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 3: June 2025

Advancing precision in air quality forecasting through machine learning integration

Komarudin, Muhamad (Unknown)
Ratna Sulistiyanti, Sri (Unknown)
Suharso, Suharso (Unknown)
Irsyad, Muhammad (Unknown)
Dian Septama, Hery (Unknown)
Yulianti, Titin (Unknown)
Sophian, Ali (Unknown)
Michel, Michel (Unknown)



Article Info

Publish Date
01 Jun 2025

Abstract

In an era where environmental concerns are escalating, air quality forecasting emerges. Forecasting is a crucial tool for addressing the adverse impacts of pollution on public health and ecosystems. In urban centers like Bandar Lampung, economic activities intensify pollution levels. This condition leveraging advanced machine learning forecasting methods can significantly mitigate these effects. This study evaluates the precision of long short-term memory (LSTM) and Prophet methods in predicting air quality. This study utilizes data from January 12, 2022 to November 9, 2023. The results reveal a distinct advantage of the LSTM method over the Prophet. The LSTM method showcases superior accuracy across all evaluation metrics. Specifically, the LSTM method achieved an average root mean squared error (RMSE) of 5.38, mean absolute error (MAE) of 3.94, and mean absolute percentage error (MAPE) of 0.07. In contrast, the Prophet method recorded higher error rates, with an average RMSE of 18.48, MAE of 15.61, and MAPE of 0.25. These numbers underscore the LSTM method's robustness and reliability in forecasting air quality. The result highlights its potential as a pivotal resource for environmental monitoring and policymaking to safeguard public health and promote sustainable urban development.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...