IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
Vol 19, No 2 (2025): April

SMOTE-SVM for Handling Imbalanced Data in Obesity Classification

Biddinika, Muhammad Kunta (Unknown)
Yuliansyah, Herman (Unknown)
Soyusiawaty, Dewi (Unknown)
Razak, Farhan Radhiansyah (Unknown)



Article Info

Publish Date
30 Apr 2025

Abstract

 Obesity is a significant health issue associated with various chronic diseases, making its early classification critical for effective interventions. This study investigates the performance of Support Vector Machine (SVM) models with Radial Basis Function (RBF) and Linear kernels on imbalanced obesity datasets. To address data imbalance, Synthetic Minority Over-sampling Technique (SMOTE) and Random Undersampling (RUS) were applied. The results reveal that balancing techniques significantly enhance classification performance, with the Linear model achieving the highest accuracy of 96.54% when balanced using SMOTE. However, limitations include reduced recall for minority classes and potential overfitting risks. These findings underscore the importance of balancing techniques in health data classification and offer insights for further optimizing model performance. The study highlights the need for advanced data balancing strategies to improve predictive accuracy and equity across all classes.

Copyrights © 2025






Journal Info

Abbrev

ijccs

Publisher

Subject

Computer Science & IT Control & Systems Engineering

Description

Indonesian Journal of Computing and Cybernetics Systems (IJCCS), a two times annually provides a forum for the full range of scholarly study . IJCCS focuses on advanced computational intelligence, including the synergetic integration of neural networks, fuzzy logic and eveolutionary computation, so ...