Penelitian ini dilakukan untuk melihat perbandingan peramalan penerimaan calon mahasiswa baru menggunakan Naïve Bayes dan Support Vector Machine. Analisis menunjukkan bahwa model Naïve Bayes menghasilkan akurasi moderat sebesar 50% pada data uji dan memprediksikan jumlah pendaftar tetap berada pada kategori Tinggi dengan estimasi rata-rata sekitar 1542,5. Akurasi yang dihasilkan tergolong cukup rendah, tetapi Naïve Bayes dapat bekerja dengan baik pada prediksi berbasis kategori. Sebaliknya, model SVM yang diterapkan dalam bentuk Support Vector Regression (SVR) juga menunjukkan akurasi 50%, namun memberikan prediksi numerik yang lebih rinci, dengan estimasi jumlah pendaftar tetap sebesar 1883. SVM menunjukkan potensi yang lebih besar dalam menangani data dengan pola tren yang meningkat. Perbandingan antara kedua metode ini menunjukkan bahwa Naïve Bayes lebih cocok untuk prediksi kategori, sedangkan SVM lebih tepat untuk prediksi numerik yang lebih akurat.
Copyrights © 2024