Bulletin of Electrical Engineering and Informatics
Vol 14, No 3: June 2025

Revving up insights: machine learning-based classification of OBD II data and driving behavior analysis using g-force metrics

Kumar Singh, Siddhanta (Unknown)
Sharma, Anand (Unknown)



Article Info

Publish Date
01 Jun 2025

Abstract

This research work uses machine learning (ML) approaches to classify on-board diagnostics II (OBD II) data and g-force measures to provide a thorough analysis of driving behavior. The research paper effectively demonstrates the classification of driving behaviours using OBD II and g-force data. Driving behaviours are analyzed by using ML algorithms such as random forest (RF), AdaBoost, and K-nearest neighbors (KNN). The analysis goes beyond a summary by discussing how OBD II data, g-force metrics, and the algorithms interrelate to classify ten distinct driving behaviors (e.g., weaving, swerving, and sideslipping). The RF classifier achieved the highest accuracy, which reinforces the strength of the chosen models. The inclusion of comparisons with other techniques supports arguments about the model's performance. The related works section connects the references to the central topic by highlighting prior approaches and research studies related to OBD II and driver behaviour analysis. The goals of this study are improving the accuracy of driving behaviour classification, with implications for traffic safety, driver education, and insurance sectors.

Copyrights © 2025






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...