Sharma, Anand
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Revving up insights: machine learning-based classification of OBD II data and driving behavior analysis using g-force metrics Kumar Singh, Siddhanta; Sharma, Anand
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.9398

Abstract

This research work uses machine learning (ML) approaches to classify on-board diagnostics II (OBD II) data and g-force measures to provide a thorough analysis of driving behavior. The research paper effectively demonstrates the classification of driving behaviours using OBD II and g-force data. Driving behaviours are analyzed by using ML algorithms such as random forest (RF), AdaBoost, and K-nearest neighbors (KNN). The analysis goes beyond a summary by discussing how OBD II data, g-force metrics, and the algorithms interrelate to classify ten distinct driving behaviors (e.g., weaving, swerving, and sideslipping). The RF classifier achieved the highest accuracy, which reinforces the strength of the chosen models. The inclusion of comparisons with other techniques supports arguments about the model's performance. The related works section connects the references to the central topic by highlighting prior approaches and research studies related to OBD II and driver behaviour analysis. The goals of this study are improving the accuracy of driving behaviour classification, with implications for traffic safety, driver education, and insurance sectors.