The growth of the domestic aviation industry in Indonesia has led to a significant increase in passenger numbers, particularly at major airports such as Sultan Hasanuddin Airport. Accurate forecasting of passenger traffic is essential for effective planning and resource allocation. This study aims to develop a suitable time series model to forecast the number of domestic air passengers departing from Sultan Hasanuddin Airport. Using monthly passenger data from January 2019 to April 2024 obtained from the Indonesian Badan Pusat Statistik (BPS), the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied. The modelling process followed the Box-Jenkins methodology, involving data exploration, stationarity testing, model identification, parameter estimation, diagnostic checking, and model validation. Among several candidate models, the ARIMA (0,1,1)(0,0,1)12 model was identified as the most appropriate, producing normally distributed, independent residuals and yielding a Mean Absolute Percentage Error (MAPE) of 4.5%. The results demonstrate that the SARIMA model provides a reliable tool for forecasting short-term domestic passenger flows at the airport.
                        
                        
                        
                        
                            
                                Copyrights © 2025