AnoaTIK: Jurnal Teknologi Informasi dan Komputer
Vol 3 No 1 (2025): Juni 2025

IMPLEMENTASI ALGORITMA LONG SHORT-TERM MEMORY PADA SISTEM KLASIFIKASI MAHASISWA BERPOTENSI DROP OUT

Mutiara, Niken (Unknown)
Saidi, La Ode (Unknown)
Wijaya Rauf, Budi (Unknown)



Article Info

Publish Date
28 Jun 2025

Abstract

This research aims to produce a classification system for students who have the potential to drop out. This classification system is expected to help identify students who have the potential to drop out early on in prevention efforts. This research uses academic data in the form of Semester Grade Point Average (IPS) 1-7, Cumulative Grade Point Average Semester 7 (IPKS7), and Cumulative SKS 7, as well as non-academic data including Study Program and Entry Path as classification parameters. The method used is the Long Short-Term Memory (LSTM) algorithm with system development using the CRISP-DM approach. System testing is done using black box testing method and performance evaluation using confusion matrix. The results showed that the classification system developed achieved an accuracy rate of 93% based on confusion matrix evaluation, and all system functionality runs as expected based on the results of black box testing.

Copyrights © 2025






Journal Info

Abbrev

atik

Publisher

Subject

Computer Science & IT

Description

AnoaTIK: Jurnal Teknologi Informasi dan Komputer (eISSN 2987-7652) merupakan salah satu jurnal yang dikelola oleh program studi Ilmu Komputer pada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Halu Oleo. Terbit 2 (dua) kali dalam setahun pada bulan Juni dan Desember sebagai salah satu ...