Pengelolaan dokumen akreditasi yang efisien menjadi tantangan utama dalam pendidikan tinggi akibat volume dokumen yang besar dan format yang bervariasi. Penelitian ini bertujuan untuk mengembangkan metode klasifikasi otomatis menggunakan kombinasi latent semantic indexing dan support vector machine guna meningkatkan akurasi dan efisiensi pengelolaan dokumen akreditasi. Akurasi dalam penelitian ini mengacu pada ketepatan sistem dalam mengidentifikasi kategori dokumen sesuai kriteria akreditasi, sementara efisiensi mencerminkan percepatan dan penyederhanaan proses klasifikasi dibandingkan dengan metode manual. Dataset terdiri dari 230 dokumen yang dikategorikan berdasarkan kriteria Lembaga Akreditasi Mandiri Kependidikan, dengan 115 dokumen untuk Kriteria 6 (Pendidikan) dan 115 dokumen untuk Kriteria 7 (Penelitian), kemudian dibagi menjadi data latih dan uji dengan rasio 60:40. Proses klasifikasi dilakukan melalui beberapa tahap, termasuk pre-processing teks, ekstraksi fitur semantik, serta optimasi parameter model untuk memperoleh hasil terbaik. Pengujian menunjukkan bahwa metode yang diusulkan mampu mencapai tingkat akurasi sebesar 91%, dengan validasi silang sebesar 94,21%. Hasil ini menunjukkan bahwa pendekatan yang digunakan efektif dalam mengotomatisasi klasifikasi dokumen akreditasi, sehingga dapat mempercepat proses evaluasi serta meningkatkan efisiensi manajemen dokumen dalam institusi pendidikan tinggi.
Copyrights © 2025