International Journal of Robotics and Control Systems
Vol 5, No 2 (2025)

Classifying Gait Disorder in Neurodegenerative Disorders Among Older Adults Using Machine Learning

Rahman, Kazi Ashikur (Unknown)
Shair, Ezreen Farina (Unknown)
Abdullah, Abdul Rahim (Unknown)
Lee, Teng Hong (Unknown)
Ali, Nursabillilah Mohd (Unknown)
Zakaria, Muhammad Iqbal (Unknown)
Al Betar, Mohammed Azmi (Unknown)



Article Info

Publish Date
24 Apr 2025

Abstract

Gait disorders are a significant concern for older adults, particularly those with neurodegenerative diseases such as Parkinson’s disease, Huntington’s disease, and Amyotrophic Lateral Sclerosis. Accurately classifying these conditions using gait data remains a complex challenge, especially in older populations, due to age-related changes in gait patterns, comorbidities, and increased variability in mobility, which can obscure disease-specific characteristics. This study explicitly classifies neurodegenerative diseases in older adults by analysing age-specific gait force data. Continuous Wavelet Transform (CWT) was utilised for advanced feature extraction, capturing both temporal and spectral signal characteristics. Classifiers including Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Multilayer Perceptron (MLP) were employed. The results demonstrated that SVM achieved an accuracy of 87.5%, outperforming RF and MLP, which achieved 83.3% and 50.0%, respectively. These findings underscore the importance of using tailored machine learning approaches to improve the diagnosis and management of neurodegenerative diseases in older adults. The potential for real-world application includes integration into clinical settings, enabling early detection and personalized interventions for individuals with gait disorders.

Copyrights © 2025






Journal Info

Abbrev

IJRCS

Publisher

Subject

Control & Systems Engineering Electrical & Electronics Engineering

Description

International Journal of Robotics and Control Systems is open access and peer-reviewed international journal that invited academicians (students and lecturers), researchers, scientists, and engineers to exchange and disseminate their work, development, and contribution in the area of robotics and ...