Driver drowsiness is a major factor that contributing to road accidents. Several researches are ongoing to detect driver drowsiness, but they suffer from the complexity and cost of the models. This paper introduces a hybrid artificial intelligence (AI)-driven framework integrating deep learning (DL) and machine learning (ML) models for real-time drowsiness detection. The system utilizes a robust DL model to classify driver states based on facial images and support vector machine (SVM) model is trained to develop a cost-efficient yet robust facial landmark detector to extract key features such as eye aspect ratio (EAR) and mouth aspect ratio (MAR). We also introduce a multi-stage decision fusion mechanism that combines convolutional neural network (CNN) probability scores with EAR/MAR thresholds to enhance detection reliability and reduce false positives. Experimental results demonstrate that the proposed model achieves 98% accuracy and F1-score, significantly outperforming traditional DL approaches. Additionally, the SVM-based landmark predictor shows improved efficiency with lower mean squared error (MSE) without having higher computational requirements.
Copyrights © 2025