Arrhythmia is a cardiovascular disorder commonly detected through electrocardiogram (ECG) signal analysis. However, classifying arrhythmias based on ECG signals remains challenging due to signal complexity and individual variability. This study aims to develop a more accurate and efficient method for arrhythmia classification. The proposed method utilizes Kernel Principal Component Analysis (KPCA) and the naïve Bayes algorithm to classify arrhythmic ECG signals. KPCA is chosen for its ability to reduce data dimensionality, facilitating the processing of complex ECG signal and improving classification accuracy by minimizing noise. The naïve Bayes algorithm is chosen for its simplicity and computational speed, as well as its effective performance, even with limited data. ECG signals are processed using KPCA to reduce data dimensionality and extract relevant features. Subsequently, the naïve Bayes algorithm is then applied to classify the ECG signals into four categories: Premature Atrial Contraction (PAC), Premature Ventricular Contraction (PVC), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The model's performance is evaluated using metrics such as accuracy, sensitivity, specificity, precision, and F1-score. The naïve Bayes model achieves an overall accuracy of 97.67%, with the highest performance observed in the RBBB class at 99.33%. Additionally, the F1-scores across all classes range from 96.62% to 98.57%, demonstrating the model's capability in detecting arrhythmias effectively. These results indicate that the combination of KPCA and naïve Bayes is effective for arrhythmic ECG signals classification.
Copyrights © 2025