JOMLAI: Journal of Machine Learning and Artificial Intelligence
Vol. 4 No. 1 (2025): Maret 2025

Analysis of Unemployment Rate in Indonesia Using Fuzzy Inference System

Tiara Dwi Lestari Purba (Unknown)
Aklima Laduna Ramadya (Unknown)
Ega Wahyu Andani (Unknown)
Baginda Faustine Sinaga (Unknown)
Victor Asido Elyakim P (Unknown)



Article Info

Publish Date
20 Mar 2025

Abstract

Unemployment is a complex problem that demands an analytical approach capable of handling data uncertainty. This study utilizes a fuzzy inference system to analyze unemployment rates in Indonesia, based on Central Statistics Agency (BPS) data for the 2023-2025 period. The fuzzy logic method was chosen due to its ability to handle linguistic variables and uncertainty in classifying unemployment levels. Input variables include education level, age group, and geographical area, while the output is a classification of unemployment risk (low, medium, high). The fuzzy inference process involves fuzzification, rule base formation, fuzzy logic inference, and defuzzification. BPS data indicates that the Open Unemployment Rate (TPT) experienced a consistent downward trend from 5.45% in February 2023 to 4.76% in February 2025. Nevertheless, the complexity of unemployment requires a flexible approach that can capture nuances of uncertainty, which conventional methods are unable to address. The research results show that the fuzzy inference system is capable of classifying unemployment levels with an accuracy of 87.3%. The highest unemployment rate is found in the 15-24 age group and among high school/vocational school graduates. This system can serve as a decision-making tool for the government in formulating more targeted employment policies.

Copyrights © 2025






Journal Info

Abbrev

jomlai

Publisher

Subject

Computer Science & IT Engineering

Description

Focus and Scope JOMLAI: Journal of Machine Learning and Artificial Intelligence is a scientific journal related to machine learning and artificial intelligence that contains scientific writings on pure research and applied research in the field of machine learning and artificial intelligence as well ...