Media sosial, khususnya Twitter, telah berkembang menjadi sarana yang efektif untuk menyampaikan konten edukasi kesehatan secara luas dan interaktif. Salah satu akun yang aktif dalam menyebarkan informasi kesehatan berbasis sains adalah Dokter Detektif, yang menyajikan konten dermatologi dengan pendekatan komunikatif. Penelitian ini bertujuan untuk menganalisis sentimen pengguna Twitter terhadap konten edukasi yang disampaikan oleh akun tersebut. Metode yang digunakan adalah klasifikasi sentimen dengan algoritma Decision Tree dan dibandingkan dengan Naive Bayes. Data diperoleh melalui web scraping, lalu diproses melalui tahapan cleansing, tokenisasi, normalisasi, dan penghapusan stopword menggunakan Sastrawi. Sentimen diklasifikasikan menjadi positif dan negatif, dengan penanganan ketidakseimbangan data menggunakan Synthetic Minority Over-sampling Technique (SMOTE). Hasil penelitian menunjukkan bahwa Decision Tree menghasilkan akurasi sebesar 84% dan menunjukkan performa yang lebih stabil dibandingkan Naive Bayes berdasarkan evaluasi precision, recall, f1-score, dan confusion matrix. Temuan ini menunjukkan bahwa Decision Tree lebih efektif dalam menganalisis sentimen teks terkait konten edukatif di media sosial, khususnya dalam domain kesehatan.
Copyrights © 2025