Journal of Applied Data Sciences
Vol 6, No 3: September 2025

Improving MCDM University Rankings through Statistical Validation Using Spearman’s Correlation and THE Benchmark

Andryana, Septi (Unknown)
Mantoro, Teddy (Unknown)
Gunaryati, Aris (Unknown)
Raffliansyah, Alfarizky Esah (Unknown)



Article Info

Publish Date
10 Jul 2025

Abstract

The evaluation of higher education institutions is a critical field for informing data-driven policy and institutional benchmarking. A key problem in this area is the lack of transparency and consistency in university rankings, particularly when using Multi-Criteria Decision-Making (MCDM) methods such as MABAC and MAIRCA, with limited research on how weighting techniques affect the reliability and alignment of these rankings with international standards like the Times Higher Education (THE) Rankings. This study proposes the use of MABAC and MAIRCA methods combined with two weighting techniques—Rank Order Centroid (ROC) and Rank Sum (RS)—to assess 20 top Indonesian universities based on five performance indicators: research quality, research environment, teaching, industry, and international outlook. Spearman’s rank correlation is used to compare the MCDM-generated rankings with THE Rankings 2025. The study contributes empirical evidence on the impact of weighting schemes on the consistency and reliability of university rankings and demonstrates that the MAIRCA-ROC method achieves the highest agreement with THE Rankings, with a correlation coefficient of 0.8135 and a p-value of 0.00001. These results validate the use of MCDM methods in higher education evaluation and emphasize the importance of selecting appropriate weighting techniques to develop transparent and robust ranking frameworks that support evidence-based policy decisions.

Copyrights © 2025






Journal Info

Abbrev

JADS

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

One of the current hot topics in science is data: how can datasets be used in scientific and scholarly research in a more reliable, citable and accountable way? Data is of paramount importance to scientific progress, yet most research data remains private. Enhancing the transparency of the processes ...