Jurnal Informatika dan Teknik Elektro Terapan
Vol. 13 No. 3 (2025)

STUDI KOMPARASI ALGORITMA RANDOM FOREST CLASSIFIER DAN SUPPORT VECTOR MACHINE DALAM PREDIKSI PENYAKIT JANTUNG

Alfajr, Nur Halizah (Unknown)
Garno, Garno (Unknown)
Yusup, Dadang (Unknown)



Article Info

Publish Date
14 Jul 2025

Abstract

Heart disease is a non-communicable disease with a high mortality rate both globally and in Indonesia. According to WHO, around 17.9 million deaths occur each year due to cardiovascular diseases. Early prediction is crucial to reducing mortality and improving life expectancy. This study compares the performance of machine learning algorithms Random Forest Classifier and Support Vector Machine in predicting heart disease. The dataset consists of 5432 medical records from cardiac outpatients at RSUD Kabupaten Bekasi in 2024, with two classes (labeled 1 (heart disease) = 3068 and labeled 0 (non-heart disease) = 2364). Models were developed using the Knowledge Discovery in Databases (KDD) approach. Evaluation results show that the Support Vector Machine model achieved the best performance compared to Random Forest Classifier with 65% accuracy, 70% precision, 68% recall, and 64% f-measure. Cross-validation and ROC analysis also indicated that Support Vector Machine obtained the highest AUC score, ranging from 0.67 to 0.68, which is categorized as poor classification.

Copyrights © 2025






Journal Info

Abbrev

jitet

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika dan Teknik Elektro Terapan (JITET) merupakan jurnal nasional yang dikelola oleh Jurusan Teknik Elektro Fakultas Teknik (FT), Universitas Lampung (Unila), sejak tahun 2013. JITET memuat artikel hasil-hasil penelitian di bidang Informatika dan Teknik Elektro. JITET berkomitmen untuk ...