Elkom: Jurnal Elektronika dan Komputer
Vol. 16 No. 1 (2023): Juli : Jurnal Elektronika dan Komputer

Perbandingan Naïve Bayes dan KNN Dalam Klasifikasi Tweet BBM Subsidi

Doddy Ircham Pambudi (Unknown)
Sulastri (Unknown)



Article Info

Publish Date
14 Jul 2023

Abstract

The government that is running at this time is also not spared from public comments on Twitter, especially regarding the increase in subsidized fuel. There are at least 4 impacts felt by the community when subsidized fuel prices increase, namely a decrease in people's purchasing power, an increase in basic prices, an increase in the unemployment rate and an increase in the poverty rate. This study aims to implement the Naïve Bayes Classifier and KNN algorithms in classifying a tweet of an increase in subsidized fuel so that it can be identified as belonging to a class with positive or negative sentiments. The data used in this research are 560 tweets. The data is divided into 2, namely 500 training data from tweet data and 60 test data from tweet data stored in xlsx format. The results of the accuracy with the Naïve Bayes Classifier algorithm is 85% while the KN algorithm is 86.8% so it can be concluded that the KNN method is better than the Naïve Bayes Classifier method in classifying tweets of increases in subsidized fuel. Keywords: Subsidized BBM, Naive Bayes, KNN

Copyrights © 2023






Journal Info

Abbrev

elkom

Publisher

Subject

Education

Description

Elkom : Jurnal Elektronika dan Komputer merupakan Jurnal yang diterbitkan oleh SEKOLAH TINGGI ELEKTRONIKA DAN KOMPUTER (STEKOM). Jurnal ini terbit 2 kali dalam setahun yaitu pada bulan Juli dan Desember. Misi dari Jurnal ELKOM adalah untuk menyebarluaskan, mengembangkan dan menfasilitasi hasil ...