Akademika
Vol 17 No 2 (2025): Jurnal Akademika

IMPEMENTASI ALGORITMA YOLO UNTUK PENGENALAN OBJEK SAMPAH: Classification, Deep Learning, Image Processing, YOLO

Rabiula, Andre (Unknown)
Haryatama Putri, Frenti (Unknown)
Nehru, Nehru (Unknown)



Article Info

Publish Date
02 Jun 2025

Abstract

Human activities cannot be separated from production and consumption activities which have an impact on the generation of waste, such as the use of plastic. Therefore, waste detection and sorting should be carried out at the initial stage of waste management to maximize the amount of waste that can be recycled. This research aims to apply image processing and deep learning algorithms in plastic waste classification, as well as testing the performance of the classification system. The research method used refers to the research stages, namely literature study, data collection, pre-processing, system design, implementation, testing, evaluation and data analysis. The research results show that plastic waste classification system obtained accuracy, precision, recall and F1 scores, namely 98.7%, 1, 0.98 and 0.99.

Copyrights © 2025






Journal Info

Abbrev

akademika

Publisher

Subject

Computer Science & IT

Description

Jurnal Akademika merupakan media publikasi hasil penelitian dari para akademisi serta praktisi yang berkenaan dengan teknologi informasi dengan beberapa topik bahasan meliputi sistem informasi, jaringan komputer, keamanan sistem, multimedia, kecerdasan buatan, dan sistem pakar. Jurnal Akademika ...