CAUCHY: Jurnal Matematika Murni dan Aplikasi
Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI

Comparative Study of Hybrid ARIMA-LSTM and ARIMAX-LSTM for Bitcoin Forecasting with Data Partitioning

Sembiring, Fikrie Hartanta (Unknown)
Permata, Regita Putri (Unknown)
Ni'mah, Rifdatun (Unknown)



Article Info

Publish Date
30 Jul 2025

Abstract

The extreme volatility of Bitcoin prices poses significant challenges for accurate forecasting using conventional models. While ARIMA excels at capturing linear trends, it struggles with non-linear dynamics; conversely, LSTM networks can model non-linearity but often overfit noisy data. To address these limitations, this study investigates six forecasting configurations: standalone ARIMAX, standalone LSTM, and four hybrid ARIMA/ARIMAX-LSTM models employing both single-split and two-stage split strategies. A comprehensive out-of-sample evaluation on daily Bitcoin closing prices reveals that the two-stage split hybrid ARIMA-LSTM achieves a remarkable MAPE of 2.60%, outperforming all other configurations. The results demonstrate that residual structure and strategic data partitioning critically influence hybrid model performance by enhancing residual learnability. These findings offer practical guidance for researchers and practitioners designing robust forecasting pipelines for highly volatile financial markets.

Copyrights © 2025






Journal Info

Abbrev

Math

Publisher

Subject

Mathematics

Description

Jurnal CAUCHY secara berkala terbit dua (2) kali dalam setahun. Redaksi menerima tulisan ilmiah hasil penelitian, kajian kepustakaan, analisis dan pemecahan permasalahan di bidang Matematika (Aljabar, Analisis, Statistika, Komputasi, dan Terapan). Naskah yang diterima akan dikilas (review) oleh ...