Claim Missing Document
Check
Articles

Found 14 Documents
Search

Urban Village Clustering in Surabaya City based on Live Birth Rate using K-Means with Principle Component Analysis Regita Putri Permata; Rifdatun Ni’mah; Amri Muhaimin
Internasional Journal of Data Science, Engineering, and Anaylitics Vol. 2 No. 2 (2022): International Journal of Data Science, Engineering, and Analytics Vol 2, No 2,
Publisher : International Journal of Data Science, Engineering, and Analytics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33005/ijdasea.v2i2.41

Abstract

Pregnancy and childbirth are important times in a mother's life. Mothers and children are vulnerable so their health efforts should be prioritized. The health level is a useful indicator to see the health efforts achievement or success of an area. The Surabaya City Government is very concerned about the health and safety of mothers and babies problem. Therefore, this study aims to map and classify urban villages in Surabaya based on the number of live births and pregnant women using the K-Means algorithm and feature reduction techniques using Principal Component Analysis. Two main components can be formed as the result of the variable reduction. The most optimal grouping of urban villages in the city of Surabaya is 3 groups/clusters. Based on the number of live births and pregnant women, those consisted of 3 clusters, in which cluster 0 consisted of 99 villages, cluster 1 consisted of 42 villages, and cluster 2 consisted of 12 villages
Analisis Regresi Logistik Biner Multilevel pada Status Kemiskinan di Pulau Jawa menggunakan Algoritma MCMC Metropolis-Hasting Regita Putri Permata; Rifdatun Ni'mah
J STATISTIKA: Jurnal Imiah Teori dan Aplikasi Statistika Vol 16 No 1 (2023): Jurnal Ilmiah Teori dan Aplikasi Statistika
Publisher : Faculty of Science and Technology, Univ. PGRI Adi Buana Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36456/jstat.vol16.no1.a6578

Abstract

Pulau Jawa adalah pulau paling padat penduduk di Indonesia. Namun, ada beberapa provinsi di Pulau Jawa yang mengalami masalah kemiskinan. Provinsi Jawa Tengah memiliki tingkat kemiskinan sebesar 11,32% pada tahun 2018, lebih tinggi dari persentase kemiskinan pulau Jawa, yang merupakan akumulasi dari kemiskinan di semua kabupaten dan kota di provinsi tersebut. Model regresi logistik multilevel mempunyai struktur data hirarki yang terdiri dari satu variabel prediktor yang diukur pada level paling bawah (level 1) dan satu variabel penjelas yang diukur pada setiap level atau level selanjutnya. Struktur hirarki data kemiskinan mengindikasikan bahwa data tersebut berasal dari beberapa level, dimana level yang lebih rendah yaitu Kabupaten/Kota tersarang pada level yang lebih tinggi yaitu Provinsi. Data persentase kemiskinan daerah diubah ke dalam bentuk biner menjadi variabel status kemiskinan sehingga metode pendugaan parameter dilakukan dengan pendekatan model regresi logistik biner hirarki dengan algoritma Metropolis-Hasting. Pemodelan ini membantu pemerintah dalam mengambil kebijakan terhadap kelompok kabupaten/kota kategori miskin berdasarkan nilai Indeks Pembangunan Manusia (IPM). Analisa pemodelan menunjukkan bahwa variabel IPM memberikan dampak yang sama saja bagi kecenderungan status kemiskinan kabupaten/kota dengan asumsi parameter lain konstan. Variabel interaksi antara IPM dan dana program Bantuan Pangan Non Tunai memberikan dampak kecenderungan kabupaten/kota di Pulau Jawa berstatus tidak miskin sebesar 1,07 kali daripada miskin.
Structural Time Series Model using Hamiltonian Monte Carlo for Rice Price Rifdatun Ni'mah
Engineering, MAthematics and Computer Science Journal (EMACS) Vol. 5 No. 3 (2023): EMACS
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/emacsjournal.v5i3.9903

Abstract

Although forecasts of future events are simply uncertain, predicting is one of the most important aspects of future planning. Accurate rice price predictions tend to be helpful for wholesalers, producers, and farmers to develop plans and strategies to reduce the risks that can be faced. Structural time series models are the most plausible alternative for long-term forecasting. This paper proposes an alternate method for modeling average rice prices using structural time series along with Bayesian parameter inference via Hamiltonian Monte Carlo (HMC). The model has been built using the monthly average wholesale rice price from January 2010 to December 2019. For working out both structural time series and HMC, the TensorFlow Probability Library was used. Linear trend, seasonal, and autoregressive components were combined as an additive model to the structural time model. The proposed Hamiltonian parameter produces an optimal acceptance rate. Their trace plot was used to diagnose the convergence of their chain. One of the predictive accuracy of models was assessed using the mean absolute percent error (MAPE). Through both single and multiple chain iterations, the prediction accuracy of a year-ahead is highly accurate, with MAPE less than 2%. Long-term iteration draws during Hamiltonian Monte Carlo should be considered when attempting to achieve more convergence.
Pendampingan Perizinan Usaha Melalui Online Single Submission Risk-Based Approach Untuk Pelaku Usaha Perempuan Sekitar Desa Pangkahwetan Kecamatan Ujungpangkah Rifdatun Ni'mah; Mohammad Hamim Zajuli Al Faroby; Bernadus Anggo Seno Aji
Humanism : Jurnal Pengabdian Masyarakat Vol 4 No 1 (2023): April
Publisher : Universitas Muhammadiyah Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30651/hm.v4i1.15720

Abstract

Kelompok perempuan merupakan pilar utama dalam pertumbuhan Usaha Mikro, Kecil dan Menengah (UMKM). Pemerintah telah melakukan sejumlah kebijakan untuk mendukung sektor UMKM dalam mengembangkan usaha diantaranya kemudahan perizinan usaha melalui Undang-Undang (UU) Nomor 11 Tahun 2020 tentang Cipta Kerja (Ciptaker). Undang-undang tersebut mendorong reformasi perizinan berusaha, salah satunya adalah bukti perizinan berusaha. Pelaku usaha dapat membuat Nomor Induk Berusaha (NIB) melalui sistem Online Single Submission Risk Based Approach (OSS-RBA). KPI Balai Perempuan Pangkahwetan sebagai kesatuan kelompok kepentingan perempuan di tingkat desa dan sekitarnya berupaya agar kelompok perempuan pelaku UMK di wilayah sekitar dapat mengurus perizinan berusaha supaya dapat meningkatkan kegiatan usaha mereka. Namun, sebagian besar dari kelompok perempuan ini berasal dari kelompok kurang mampu, usia lanjut, tingkat pendidikan dan literasi digital rendah. Kondisi tersebut membuat kelompok perempuan tersebut enggan mengurus perizinan usaha secara mandiri. Pengabdian masyarakat dilakukan agar mitra mendapatkan peningkatan pemberdayaan berupa pengetahuan terbaru terkait perizinan berusaha berbasis risiko melalui kegiatan penyuluhan dan pendampingan. Sebanyak 23 pelaku usaha telah berhasil terdaftar dalam sistem OSS-RBA dan mendapatkan dokumen NIB versi cetak secara gratis. Bukti legalitas usaha dapat dimanfaatkan untuk membantu dalam mengembangkan kapasitas usaha mereka.
Daily Rainfall Forecasting with ARIMA Exogenous Variables and Support Vector Regression Regita Putri Permata; Rifdatun Ni'mah; Andrea Tri Rian Dani
Jurnal Varian Vol 7 No 2 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/varian.v7i2.3202

Abstract

There is a seasonal element every year, with the dry season often lasting from May to October and the rainy season lasting from November to April. However, climate change causes the changing of the rainy and dry seasons to be erratic, so it is necessary to anticipate weather conditions. Prediction of rainfall is used to see natural conditions in the future with time series modeling. The rainfall modeling method at the six Surabaya observation posts used is the Autoregressive Integrated Moving Average with exogenous variables (ARIMAX) and Support Vector Regression. The exogenous variable used is the captured seasonal pattern of rainfall. The SVR model uses input lags from the ARIMAX model and parameter tuning uses the Kernel Radial Based Function. Selection of the best model uses the minimum RMSE value. The results showed that the average occurrence of rain at the six rainfall observation posts occurred in January, February, March, April, November and December. The ARIMAX method in this study is well used to predict rainfall in Gubeng and rainfall in Wonorejo. The SVR input lag ARIMAX method is good for predicting rainfall for Keputih, Kedung Cowek, Wonokromo and Gunung Sari. Nonparametric methods are better used to forecast rainfall data because they are able to capture data patterns with greater volatility than parametric methods, one of which is the SVR method.
Penyesuaian distribusi proses keberangkatan sepeda motor dari lahan parkir saat waktu puncak Ni'mah, Rifdatun; Permata, Regita Putri
Majalah Ilmiah Matematika dan Statistika Vol. 23 No. 2 (2023): Majalah Ilmiah Matematika dan Statistika
Publisher : Jurusan Matematika FMIPA Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/mims.v23i2.38203

Abstract

The study aims to model the distribution of motorcycle departures from the parking lot at peak times with the Poisson process approach. This process involves a discrete number of departures and continuous interdeparture time. The probability distribution candidate was selected to model the data according to the data nature, the stochastic process, and the empirical observation of the departure process. Parameters are estimated using the Maximum Likelihood Estimation (MLE) method and the bootstrapping procedure to construct confidence intervals for the parameter. The goodness-of-fit test is applied to select the best probability distribution that matches empirical data. Inferences to the distribution parameters suggest that Weibull's distribution is more appropriate for describing the motorcycle's inter-departure time. The number of motorcycle departures fits significantly into a negative binomial distribution. The results of the study concluded that the Poisson process applied was a case of overdispersion, with the motorcycle departure rate decreasing over time.Keywords: Bootstrapping, departure, distribution, goodness-of-fit, PoissonMSC2020: 60E05
Development of MongoDB-based Gait System with Interactive Visualization for Clinical Analysis Rizkika, Rizal Rahman; Fadhilah, Helisyah Nur; Mustaqim, Tanzilal; Ni'mah, Rifdatun
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6451

Abstract

Gait analysis is a crucial aspect of biomechanics and medical rehabilitation, used to detect movement disorders, assess therapy effectiveness, and understand human walking patterns. In Indonesia, gait research remains limited, with most data sourced from abroad, which may not reflect the characteristics of the local population. This study uses data from Vicon camera recordings that track marker movements on the subject's body and convert them into kinematic data in spatial coordinates, stored in Excel files. To support clinical applications, an efficient system is needed to manage gait data and present analysis results interactively. Therefore, a MongoDB-based gait data management system was developed due to its flexibility in handling unstructured data and scalability. The system was designed to preprocess gait data and display the results through an interactive Streamlit dashboard. The analysis involved calculating gait angle parameters, visualized in a gait cycle angle graph and analyzed statistically using mean and standard error to improve interpretation accuracy. Testing shows that the system can store data in an average of 1.52 seconds, retrieve it in 3.598 seconds, and render visualizations in 0.192 seconds, with high accuracy and only a 0.1-degree error between the input and output. This system effectively addresses the challenge of managing local gait data and supports comprehensive biomechanical analysis, enabling clinicians to make informed decisions regarding rehabilitation needs based on deviations from normal gait angle ranges.
Comparative Study of Hybrid ARIMA-LSTM and ARIMAX-LSTM for Bitcoin Forecasting with Data Partitioning Sembiring, Fikrie Hartanta; Permata, Regita Putri; Ni'mah, Rifdatun
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.35118

Abstract

The extreme volatility of Bitcoin prices poses significant challenges for accurate forecasting using conventional models. While ARIMA excels at capturing linear trends, it struggles with non-linear dynamics; conversely, LSTM networks can model non-linearity but often overfit noisy data. To address these limitations, this study investigates six forecasting configurations: standalone ARIMAX, standalone LSTM, and four hybrid ARIMA/ARIMAX-LSTM models employing both single-split and two-stage split strategies. A comprehensive out-of-sample evaluation on daily Bitcoin closing prices reveals that the two-stage split hybrid ARIMA-LSTM achieves a remarkable MAPE of 2.60%, outperforming all other configurations. The results demonstrate that residual structure and strategic data partitioning critically influence hybrid model performance by enhancing residual learnability. These findings offer practical guidance for researchers and practitioners designing robust forecasting pipelines for highly volatile financial markets.
Pendampingan Perizinan Usaha Melalui Online Single Submission Risk-Based Approach Untuk Pelaku Usaha Perempuan Sekitar Desa Pangkahwetan Kecamatan Ujungpangkah Ni'mah, Rifdatun; Faroby, Mohammad Hamim Zajuli Al; Aji, Bernadus Anggo Seno
Humanism : Jurnal Pengabdian Masyarakat Vol 4 No 1 (2023): April
Publisher : Universitas Muhammadiyah Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30651/hm.v4i1.15720

Abstract

Kelompok perempuan merupakan pilar utama dalam pertumbuhan Usaha Mikro, Kecil dan Menengah (UMKM). Pemerintah telah melakukan sejumlah kebijakan untuk mendukung sektor UMKM dalam mengembangkan usaha diantaranya kemudahan perizinan usaha melalui Undang-Undang (UU) Nomor 11 Tahun 2020 tentang Cipta Kerja (Ciptaker). Undang-undang tersebut mendorong reformasi perizinan berusaha, salah satunya adalah bukti perizinan berusaha. Pelaku usaha dapat membuat Nomor Induk Berusaha (NIB) melalui sistem Online Single Submission Risk Based Approach (OSS-RBA). KPI Balai Perempuan Pangkahwetan sebagai kesatuan kelompok kepentingan perempuan di tingkat desa dan sekitarnya berupaya agar kelompok perempuan pelaku UMK di wilayah sekitar dapat mengurus perizinan berusaha supaya dapat meningkatkan kegiatan usaha mereka. Namun, sebagian besar dari kelompok perempuan ini berasal dari kelompok kurang mampu, usia lanjut, tingkat pendidikan dan literasi digital rendah. Kondisi tersebut membuat kelompok perempuan tersebut enggan mengurus perizinan usaha secara mandiri. Pengabdian masyarakat dilakukan agar mitra mendapatkan peningkatan pemberdayaan berupa pengetahuan terbaru terkait perizinan berusaha berbasis risiko melalui kegiatan penyuluhan dan pendampingan. Sebanyak 23 pelaku usaha telah berhasil terdaftar dalam sistem OSS-RBA dan mendapatkan dokumen NIB versi cetak secara gratis. Bukti legalitas usaha dapat dimanfaatkan untuk membantu dalam mengembangkan kapasitas usaha mereka.
Daily Rainfall Forecasting with ARIMA Exogenous Variables and Support Vector Regression Permata, Regita Putri; Ni'mah, Rifdatun; Dani, Andrea Tri Rian
Jurnal Varian Vol. 7 No. 2 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/varian.v7i2.3202

Abstract

There is a seasonal element every year, with the dry season often lasting from May to October and the rainy season lasting from November to April. However, climate change causes the changing of the rainy and dry seasons to be erratic, so it is necessary to anticipate weather conditions. Prediction of rainfall is used to see natural conditions in the future with time series modeling. The rainfall modeling method at the six Surabaya observation posts used is the Autoregressive Integrated Moving Average with exogenous variables (ARIMAX) and Support Vector Regression. The exogenous variable used is the captured seasonal pattern of rainfall. The SVR model uses input lags from the ARIMAX model and parameter tuning uses the Kernel Radial Based Function. Selection of the best model uses the minimum RMSE value. The results showed that the average occurrence of rain at the six rainfall observation posts occurred in January, February, March, April, November and December. The ARIMAX method in this study is well used to predict rainfall in Gubeng and rainfall in Wonorejo. The SVR input lag ARIMAX method is good for predicting rainfall for Keputih, Kedung Cowek, Wonokromo and Gunung Sari. Nonparametric methods are better used to forecast rainfall data because they are able to capture data patterns with greater volatility than parametric methods, one of which is the SVR method.