Sandi morse adalah teknik komunikasi unik yang masih digunakan dalam berbagai konteks, seperti komunikasi darurat dan amatir radio. Pengendali frekuensi radio di Indonesia sering menghadapi kesulitan dalam menghafal sandi morse. Media pembelajaran sandi morse saat ini masih terbatas pada titik dan garis yang sulit untuk dihafalkan. Penelitian ini mengembangkan sistem deteksi hand gesture menggunakan metode K-Nearest Neighbors (KNN) untuk mempermudah penghafalan sandi morse. Sistem ini memanfaatkan gerakan tangan seperti mengepal dan membuka telapak tangan, untuk mewakili kombinasi titik dan garis dalam sandi morse, dengan harapan membuat proses belajar lebih intuitif dan interaktif. Implementasi sistem dilakukan dengan menggunakan webcam, algoritma Mediapipe, library OpenCV, dan aplikasi Unity. Kemudian model dievaluasi performanya dan serta antarmukanya diuji degan blackbox. Sistem deteksi hand gesture berhasil mengidentifikasi huruf abjad berdasarkan gerakan tangan dengan akurasi minimal 60%. Pengujian lebih lanjut menggunakan KNN dengan nilai K-1, menunjukkan rata-rata akurasi sebesar 81%. Sehinga sistem efektif dalam mendeteksi gerakan tangan untuk mempermudah penghafalan sandi morse. Secara keseluruhan, dengan akurasi rata-rata 81%, sistem deteksi hand gesture ini menunjukkan potensi besar dalam meningkatkan pembelajaran sandi morse secara efektif dan menarik. Kendala utama dalam penelitian ini adalah terbatasnya data partisipan, yang mengakibatkan variasi dalam gerakan tangan dan potensi tumpang tindih antara kelas gerakan. Penelitian ini membutuhkan lebih banyak data untuk meningkatkan akurasi dan mengurangi kesalahan dalam deteksi gerakan. Sehingga, pada penelitian selanjutnya diharapkan peneliti memperbanyak dataset yang digunakan pada deteksi gerakan tangan untuk sandi morse.
Copyrights © 2025