The Indonesian Journal of Computer Science
Vol. 14 No. 4 (2025): The Indonesian Journal of Computer Science

Enhancing Diabetes Prediction Accuracy Using Stacked Machine Learning and Deep Learning Models: A Public Health Approach

Islam, Md Ziarul (Unknown)
Mohd Khairul Azmi Bin Hassan (Unknown)
Amir 'Aatieff Bin Amir Hussin (Unknown)
Md Salman Sha (Unknown)



Article Info

Publish Date
01 Aug 2025

Abstract

Diabetes mellitus is a growing public health issue in Malaysia, affecting 7 million adults aged 18 and older. By 2025, 20.1% of Malaysians will have diabetes, with the International Diabetes Federation predicting 5 million by 2030. A study aims to improve diabetes prediction accuracy and reliability. The Indian PIMA Diabetes dataset was used to develop stacked machine learning and deep learning models, with 70% ML and 30% DL achieving optimal results. The weighted soft voting ensemble (70% ML, 30% DL) outperformed individual stacking models in terms of reliability and balanced performance, improving diabetes classification with 75.65% accuracy, 67.89% precision, and 81.41% ROC-AUC. The ensemble method, optimized for medical diagnosis tasks, showed improved accuracy, robustness, and generalization. However, ethical considerations, data privacy, and algorithmic biases are crucial for maximizing AI's potential in diabetes care, highlighting the need for scalable solutions.

Copyrights © 2025






Journal Info

Abbrev

ijcs

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Engineering

Description

The Indonesian Journal of Computer Science (IJCS) is a bimonthly peer-reviewed journal published by AI Society and STMIK Indonesia. IJCS editions will be published at the end of February, April, June, August, October and December. The scope of IJCS includes general computer science, information ...