Elkom: Jurnal Elektronika dan Komputer
Vol. 18 No. 1 (2025): Juli : Jurnal Elektronika dan Komputer

Predictive Modeling of Microstrip Antenna Slot Dimensions Using Random Forest Regression

Yusuf, Aisya Nur Aulia (Unknown)
Nurdiniyah, Elsa Sari Hayunah (Unknown)
Amalia, Norma (Unknown)



Article Info

Publish Date
30 Jul 2025

Abstract

This study presents a machine learning approach for predicting the dimensions of microstrip antenna slots based on antenna performance parameters such as frequency, gain, directivity, return loss (S11), radiation efficiency, and VSWR. A two-phase methodology was employed. In the first phase, ten regression algorithms were evaluated, and Random Forest was identified as the most effective model based on Mean Absolute Error (MAE) and R-squared (R²) scores. In the second phase, hyperparameter tuning was conducted using Grid Search to further improve the model’s performance. The optimized Random Forest model demonstrated consistent improvements in predictive accuracy, with R² values increasing across all output variables. These results indicate that the combination of regression-based modeling and systematic hyperparameter tuning is effective for capturing complex relationships in antenna design tasks. The proposed approach offers a promising data-driven alternative for geometric prediction in microstrip antenna development, particularly when analytical models are insufficient.

Copyrights © 2025






Journal Info

Abbrev

elkom

Publisher

Subject

Education

Description

Elkom : Jurnal Elektronika dan Komputer merupakan Jurnal yang diterbitkan oleh SEKOLAH TINGGI ELEKTRONIKA DAN KOMPUTER (STEKOM). Jurnal ini terbit 2 kali dalam setahun yaitu pada bulan Juli dan Desember. Misi dari Jurnal ELKOM adalah untuk menyebarluaskan, mengembangkan dan menfasilitasi hasil ...