eProceedings of Engineering
Vol. 11 No. 4 (2024): Agustus 2024

Pengembangan Model Prediksi Harga Beras Nasional Berbasis Multivariate Menggunakan Temporal Fusion Transformer (TFT)

Radhibilla, Maulaya (Unknown)
Wibowo, Suryo Adhi (Unknown)
Usman, Koredianto (Unknown)



Article Info

Publish Date
31 Aug 2024

Abstract

Dalam konteks ekonomi, sosial, dan politik, harga komoditas pangan memiliki peran penting yang signifikan dalam menentukan stabilitas ekonomi dan kesejahteraan masyarakat. Namun, terdapat tantangan dalam pengelolaan harga pangan, seperti mengidentifikasi periode-periode tertentu di mana harga pangan mengalami kenaikan signifikan dan memperkirakan tren harga pangan di masa depan. Berdasarkan latar belakang tersebut, dirancanglah model prediksi dengan pendekatan multivariate, menggunakan arsitektur Temporal Fusion Transformer (TFT). TFT adalah model Transformer yang dirancang untuk peramalan time series multi-horizon dan meraih performa state-of-the-art. Pada perancangan ini, terdapat enam jenis data, baik data kontinu maupun kategorial, yang digunakan dengan target prediksi harga harian Beras Premium dan Beras Medium hingga 30 hari ke depan berdasarkan pola temporal 90 hari sebelumnya. Berdasarkan pengujian yang dilakukan dengan 30 baris terakhir data, didapatkan nilai Mean Absolute Percentage Error (MAPE) sebesar 0,23% untuk Beras Premium dan 0,3% untuk Beras Medium. Pengujian ini menunjukkan bahwa performa TFT sangat baik dalam implementasi time series multivariate forecasting. Kata kunci— Harga, Beras, Time Series, TFT, Multivariate, MAPE

Copyrights © 2024






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...