JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH)
Vol 6 No 4 (2025): Juli 2025

Implementasi dan Optimalisasi Metode Naive Bayes Dalam Sistem Deteksi Dini Penyakit Tiroid

Nurhasanah, Nurhasanah (Unknown)
Asyiah, Nilovar (Unknown)
Irawati, Okta (Unknown)



Article Info

Publish Date
06 Aug 2025

Abstract

This study aims to develop an early detection system for thyroid disease using the Naive Bayes algorithm. The dataset used is the Thyroid Disease Dataset from the UCI Machine Learning Repository, consisting of thousands of patient records. Prior to model training, the data undergoes preprocessing steps such as handling missing values, numerical normalization, and categorical encoding. The classification process involves calculating the prior probability, likelihood, and posterior probability for each class: normal, hypothyroid, and hyperthyroid. The system also presents the probability percentage for each class as an automated diagnosis result. Model accuracy is evaluated using a Confusion Matrix, achieving an accuracy score of 98.01% on the test data. These results indicate that the proposed approach can effectively and accurately classify thyroid conditions for early diagnosis purposes.

Copyrights © 2025






Journal Info

Abbrev

josh

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Artikel yang dimuat melalui proses Blind Review oleh Jurnal JOSH, dengan mempertimbangkan antara lain: terpenuhinya persyaratan baku publikasi jurnal, metodologi riset yang digunakan, dan signifikansi kontribusi hasil riset terhadap pengembangan keilmuan bidang teknologi dan informasi. Fokus Journal ...