Molekul: Jurnal Ilmiah Kimia
Vol 20 No 1 (2025)

Synthesis of TiO2-Activated Carbon from Coffee Dregs by Hydrothermal Method for Photodegradation of Diazinon

Haryati, Tanti (Unknown)
Zakaria, Helmy Ahmad (Unknown)
Sutisna, Sutisna (Unknown)
Suwardiyanto, Suwardiyanto (Unknown)
Sulistiyo, Yudi Aris (Unknown)
Andarini, Novita (Unknown)



Article Info

Publish Date
21 Mar 2025

Abstract

ABSTRACT. The photocatalytic activity of TiO₂ can be enhanced by binding it to materials with high adsorption capacity. The synthesis began with the mixture of 5 mL TTIP, 30 mL ethanol, and H₂O 30 mL stirred for 1 hour. Activated carbon made from coffee grounds in varying amounts (5 g, 10 g, and 15 g) was then added to the TTIP solution, and the mixture was stirred for 2 hours. The mixture was then placed in an autoclave, heated at 180°C for 12 hours, dried, and then calcined at 500°C for 3 hours. SEM morphological analysis showed that TiO₂ particles were attached to the surface of the activated carbon, which was further confirmed by EDX data showing the presence of Ti and O elements in the synthesized material. Furthermore, crystallinity and gap analyses demonstrated that the material was exclusively in the anatase phase. The largest surface area, 286.10 m²/g, was observed on titanium dioxide-activated carbon/10 (TiO₂-AC/10), exhibiting a mesoporous structure and microporous features. Photocatalytic tests for diazinon degradation demonstrated that TiO₂-AC/10 exhibited the most significant photocatalytic activity of 65.18%. The composite material's degradation capability diminished by 9-13% from the initial to the third cycle. The residual titanium elements within the composite material maintained stability, suggesting the integrity and durability of TiO₂ particles affixed to the surface of activated carbon. Keywords: TiO2-AC, Coffee Dregs, Diazinon, Photocatalysis, Reusability

Copyrights © 2025






Journal Info

Abbrev

jm

Publisher

Subject

Biochemistry, Genetics & Molecular Biology Chemistry Materials Science & Nanotechnology

Description

The MOLEKUL is dedicated to fostering advancements in all branches of chemistry and its diverse sub-disciplines. It aims to publish high-quality research encompassing a wide range of topics, including but not limited to Pharmaceutical Chemistry, Biological Activities of Synthetic Drugs, ...