This study examines the latest trends, challenges, and advances in food image segmentation and computer vision-based nutritional analysis. Traditional nutritional assessment methods such as food diaries and questionnaires are limited by their reliance on participant recall and manual processing, which reduces their accuracy and efficiency. As an alternative, advances in machine learning and deep learning have shown potential in automating food identification and estimating nutrient content, such as calories, protein, carbohydrates, and fat. This study was conducted through bibliometric analysis and technical review of publications from the Scopus database, using a structured search strategy and applying inclusion and exclusion criteria. Articles were selected based on topic relevance, use of machine learning or deep learning methods, publication in English, and publication between 2020 and 2024. The review identified key research trends, key contributors, popular methods such as CNN and YOLO, and the most frequently reported limitations, including lack of dataset diversity, inaccuracy in food volume estimation, and the need for real-time integrated systems. These limitations were analyzed based on the methodology and findings of the reviewed studies. This review is expected to be a comprehensive reference for researchers and practitioners in developing food image segmentation technology for more accurate and applicable nutritional assessment.
Copyrights © 2025