Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika)
Vol 10, No 2 (2025): Edisi Agustus

Klasifikasi Stunting Pada Balita dengan Algoritma Random forest dan Support Vector machine

Panigoro, Buyung (Unknown)
Barata, Mula Agung (Unknown)
Mahmudah, Nur (Unknown)



Article Info

Publish Date
30 Aug 2025

Abstract

Stunting is a health problem in the world, many factors cause stunting in toddlers, this study aims to compare the performance of the Random forest algorithm and Support Vector machine using a private dataset with a total of 618 toddler data in the Sumberharjo area in February, August 2023-2024. Adding a combination of smote techniques to handle unbalanced data and k-fold Cross-validation. The results showed the Random forest algorithm with a stable accuracy of 95.41% after reaching 94.35%. For the Support Vector machine algorithm, it achieved an accuracy of 81.45% after being smote to 83.06% and the recal decreased to 51.16%. Random forest is more recommended for classifying stunting in toddlers with stable results compared to Support Vector machines.

Copyrights © 2025






Journal Info

Abbrev

jurasik

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

JURASIK adalah jurnal yang diterbitkan oleh LPPM STIKOM Tunas Bangsa Pematangsiantar yang bertujuan untuk mewadahi penelitian di bidang Sistem Informasi dan Teknik Informatika. JURASIK (Jurnal Riset Sistem Informasi dan Teknik Informatika) adalah jurnal ilmiah dalam ilmu komputer dan informasi yang ...