The Indonesian Journal of Computer Science
Vol. 14 No. 4 (2025): The Indonesian Journal of Computer Science

Evaluation of Selected Base Models for Technostress Detection

Oladipo, Sunday (Unknown)
Onuiri, Ernest (Unknown)
Ayankoya, Folasade (Unknown)
Ogu, Emmanuel (Unknown)



Article Info

Publish Date
22 Aug 2025

Abstract

The widespread use of technology has led to an increase in technostress which is a phenomenon where individuals experience stress and anxiety due to their interactions with technology. As social media platforms become increasingly integral to daily life, detecting technostress from online interactions has become a pressing concern and an avenue to enrich the research in the area of detecting technostress. This study evaluates the performance of selected base models on X (Twitter data). Also, the study investigated the effectiveness of a feature extraction technique for the improvement of the model performance through data preprocessing. The study made use of the dataset of X posts (Sentiment140) obtained from the Standford University. The extracted features were used to train and evaluate four base models: Random Forest (RF), Extreme Gradient Boosting (XGB), Gradient Boosting (GB), and Light Gradient Boosting Machine (LGBM). The performance of each model was evaluated based on accuracy, precision, recall, F1-score and Kappa statistics. The RF model outperformed other base models with accuracy, precision, recall, f1-score, and Kappa score values of 88.03%, 85.98%, 85.68%, 85.79% and 79.81% respectively. The results highlight the importance of preprocessing and feature extraction techniques in improving model performance; contributes to the development of more effective technostress detection systems and provide insights into the application of machine learning algorithms for analyzing online interactions.

Copyrights © 2025






Journal Info

Abbrev

ijcs

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Engineering

Description

The Indonesian Journal of Computer Science (IJCS) is a bimonthly peer-reviewed journal published by AI Society and STMIK Indonesia. IJCS editions will be published at the end of February, April, June, August, October and December. The scope of IJCS includes general computer science, information ...