Penelitian ini bertujuan mengembangkan model prediksi kelulusan mahasiswa menggunakan algoritma K-Nearest Neighbor (KNN). Permasalahan yang diangkat adalah ketidakpastian dalam meramalkan kelulusan berdasarkan data historis akademik, khususnya Indeks Prestasi Semester (IPS). Penelitian berfokus pada pembangunan model klasifikasi biner yang dapat mengidentifikasi status kelulusan mahasiswa guna mendukung deteksi dini risiko akademik. Dataset yang digunakan terdiri dari 519 data mahasiswa Program Studi Teknologi Informasi, dengan atribut berupa nilai IPS semester 1 hingga 8, serta label target berupa status kelulusan. Karena terdapat ketidakseimbangan antar kelas, diterapkan Random Over Sampling (ROS) untuk menyeimbangkan distribusi sebelum pelatihan model. Data kemudian dinormalisasi dan dibagi menjadi data latih dan data uji. Algoritma KNN digunakan dengan parameter k = 5, yang mengklasifikasikan label berdasarkan mayoritas tetangga terdekat. Hasil pengujian menunjukkan bahwa model KNN mampu memberikan akurasi prediksi sebesar 90%, menandakan bahwa pendekatan berbasis data mining ini efektif untuk mendukung evaluasi dan pengelolaan akademik di lingkungan pendidikan tinggi.
Copyrights © 2025