This  study  focuses on the reconstruction of the Phi-2  method  for text-based question-answering systems  related to diabetes  using the MedAlpaca dataset.   The  aim  is to enhance  the accuracy in  diabetes  question-answering applications.   We  leverage LoRA  techniques   to fine-tune  the model,  thereby  improving its  ability to handle complex medical queries.  The integration of the MedAlpaca dataset, which contains  a diverse range of medical questions  and answers,  provides a robust  foundation for training and testing the model.  The results  reveal  that fine-tuning  with   MedAlpaca  significantly  enhances   the  model’s   performance,  achieving  higher   accuracy compared to the base Phi-2  model,  achieving a performance increase  from  14.81% to 49.37% on MedMCQA, reaching  92.83%  on  PubMedQA, and  38.78%  on  MedQA. It  also  surpasses  other  leading  models   such  as BioBERT  (89.90%)   and   GatorTron  (90.87%).        The   results    highlight  the   effectiveness    of   incorporating domain-specific datasets  like  MedAlpaca to boost model  performance.  This  advancement points  to promising directions  for  future  research,   including  expanding datasets  and  refining fine-tuning techniques   to  further improve automated  medical question-answering systems.
                        
                        
                        
                        
                            
                                Copyrights © 2025